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Unit   1:   Vectors   

 

The   basics:   
What   is   a   vector?   
A   vector   essentially   is   a   line   that   connects   two   points,   it   has   a  
distance   or   magnitude,   and   it   has   a   direction.   



 
The   above   figure   displays   a   vector,   v.   This   vector   has   both   x   and  
y   components.   The   x   component   of   the   vector   tells   us   how   far  
left   or   right   the   vector   is,   while   the   y   component   tells   us   how   far  
up   or   down   the   vector   is.   For   future   reference,   we   shall   declare  
that   the   vector   extends   from   the   origin   (0,0)   to   the   point   (x,y).   
 
Now   in   algebra   II   or   even   geometry,   a   question   they   could’ve  
asked   you   is   to   find   the   distance   between   the   points   (0,0)   and  
(x,y)   and   you   would   use   the   distance   formula,  

distance   =    √(x ) y )− 0 2 + ( − 0 2   

 
Depending   on   the   teacher   you   had,   you   may   not   realize   where  
that   formula   comes   from,   but   regardless,   I’m   going   to   explain  
the   derivation   of   the   formula   right   now.   



 
Recall   that   the   X   and   Y   axis   are   always   formed   such   that   they  
are   perpendicular   to   one   another,   in   other   words,   when   they  
intersect,   they   form   a   90   degree   angle.   With   that   in   mind,   look   at  
the   picture   of   the   vector   again,   

Notice   how   the   side   opposite   the   θ   hits   the   x-axis   such   that   a   90  
degree   angle   forms.   Therefore,   what   we   are   actually   looking   at  
is   a   right   triangle.   This   right   triangle   in   question   has   legs   that  
have   lengths,   x,   which   is   the   length   of   the   leg   that   is   colinear  
with   the   x-axis,   and   another   leg   that   has   length   y,   which   is   the  
length   of   the   leg   that   is   parallel   to   the   y-axis.   
 



The   length   of   the   vector   is   the   hypotenuse   of   the   right   triangle  
formed   by   the   two   legs   because   it   is   the   side   of   the   right   triangle  
that   is   opposite   that   of   the   90   degree   angle.   
 
Well   that’s   very   nice,   because   we   know   how   to   calculate   the  
length   of   the   hypotenuse,   that’s   just   Pythagorean   Theorem!!   
 
Recall   that   Pythagorean   Theorem   states   that   
 
C 2    =   a 2    +   b 2  

 

Where   C   is   the   length   of   the   hypotenuse,   and,   in   this   case,   the  
length   of   the   vector,   V,   and   a   and   b   represent   the   lengths   of   the  
legs.   Because   we   know   the   length   of   the   legs   are   x   and   y  
respectively,   we   can   solve   for   the   length   of   the   vector   by  
isolating   C.   
 

C   =    √a2 + b2  
 
To   denote   the   length   of   vector   V,   mathematicians   use   absolute  
value   bars.   
 
Therefore,   the   length   of   vector   V   is   denoted   as    V∣ ∣  
 
Plugging   into   good   ol’   pythag,   we   get   the   basic   equation   



 
 V∣ ∣ = √x2 + y2  

 
Since   we   know   that   the   vector,   V   has   both   x   and   y   components,  
what   in   reality   is   happening   is   that   we   are   adding   the   vector,   X  
which   extends   from   (0,0)   to   (x,0)   to   the   vector,   Y   which   extends  
from   (0,0)   to   (0,y).   
 
Now   let’s   talk   about   finding   individual   components   of   vectors  
since   this   will   be   of   use   to   us   in   physics.   
 
Recall   the   following   formulas:   
 

inθ s =  Opposite
Hypotenuse  

osθ c =  Adjacent
Hypotenuse  

anθ t =  Adjacent
Opposite  

 



Using   trig   functions,   we   can   find   out   the   individual   components  
of   the   vector   in   question.   
 
We   know   that   the   magnitude   of   the   vector   V   is   equal   to   the  
hypotenuse   of   the   right   triangle.   For   the   remainder   of   this   lesson,  
we’re   going   to   refer   to   the   x-component   of   V   as   V x    and   likewise,  
the   y-component   of   V   will   be   referred   to   as   V y .   
 
Recall   sinθ   =   Opposite

Hypotenuse  

Well   the   opposite   side   of   the   angle    θ   is   going   to   be   how   far   up  
the   vector   is,   therefore   it   is   going   to   be   V y .   
 
Plugging   into   the   above   equation   yields   the   following   results:   
 



sinθ   =   V y

V∣ ∣  
 
Isolating   V y    we   get   the   basic   equation   
 

sinθ   =   V y  V∣ ∣   
 
To   get   the   x-component   of   the   vector   V   we   can   do   a   similar  
process,   except   now   we   will   use   cosθ.   
 
Recall   that   cosθ   =    Adjacent

Hypotenuse  

 
Well   the   adjacent   side   to   the   angle   θ   is   how   far   the   vector   V   is   to  
the   right,   therefore   it   represents   the   x-component   of   the   vector,  
or   V x   
 
Plugging   into   the   above   equation   yields   the   following   results:   
 

osθ c =  V x
V∣ ∣  

 
Isolating   V x    gets   the   basic   equation  
 

cosθ   =   V x  V∣ ∣   
 
Note   that    this   is   only   because   the   angle   θ   is   with   respect   to   the  
x-axis ,   if   the   angle   θ   was   with   respect   to   the   y-axis   then   the   sin  



and   cos   will   switch.   Usually   the   problem   will   give   us   an   angle  
that   is   with   respect   to   the   horizontal,   however,   this   is   not   always  
the   case,   and   thus   you   should   do   this   component   separation  
piecemeal   all   the   time.   
 
How   to   add   vectors:   
 
It’s   very   simple,   it's   through   a   process   called   the   head-to-tail  
method,   whereby   you   put   the   head   of   one   and   attach   it   to   the   tail  
of   the   other,   the   resultant   is   the   line   that   connects   it.   Look   at   the  
below   picture.   R   is   the   vector   addition/resultant   of   vector   A   and  
vector   B.  

 
 
 
 
 
 
 
 
 
 
 
 

How   to   subtract   vectors:   
 



The   same   as   adding   vectors   except   you   take   the   reflection   of   one  
of   the   vectors   and   add   that   way,   you’re   basically   adding   a  
negative.   A   -   B   =   A   +   -B.   
 
 
 
  



 

Dot   product:   
The   dot   product   is   a   vector   operator   that   determines   the   degree  
of   “likeness”,   or   in   other   words,   how   much   vector   A   is   in   the  
direction   of   vector   B.   
 
Important   things   to   note   about   the   dot   product:   

1. The   result   of   the   dot   product   operator   is   a    SCALAR  
quantity,   meaning   it   does   not   have   a   direction.   

2. A   dot   B   =   B   dot   A,   in   other   words,   dot   product   has   a  
commutative   property.   

3. If   A   dot   B   evaluates   to   0,   the   two   vectors   are   said   to   be  
orthogonal ,   or    perpendicular,    we   will   see   why   this   is   so  
when   we   look   at   how   to   compute   vectors.   

 
How   to   compute   the   dot   product   of   two   vectors,   A   and   B:   
 
There   are   two   ways   to   do   this   depending   on   the   information  
given   to   you  
 
A   dot   B   =   |A|   |B|   cosθ   
 
A   dot   B   =   Σ i    a i b i   
 



Remember   how   we   said   that   if   A   dot   B   equals   0   then   the   two  
vectors   are   orthogonal,   well   cos(π/2)   =   0,   hence   if   there   is   a   90  
degree   angle   between   the   two   vectors   the   dot   product   returns   a  
value   of   0.   
 
Cool   things   that   you   can   do   with   the   dot   product   operator:   
 
Find   the   angle   between   the   two   vectors  
Find   out   if   vectors   are   in   the   same   plane  
 
|A|   |B|   cosθ   =   Σ i    a i b i  
 
Therefore,   
 
Cosθ   =   (Σ i    a i b i )/|A|   |B|   
 
Therefore,   
 
θ   =   cos -1 ([Σ i    a i b i ]/|A|   |B|   )  
 
Examples   of   the   dot   product:   
 
Lets   say   we   have   two   vectors,   A   and   B   
 
A   =   <1,2,3>   
B   =   <-1,2,-3>   



 
In   this   example,   we   don’t   know   the   angle   between   the   two  
vectors,   so   let’s   find   it.   
 
Recall   previous   equation,   
 
θ   =   cos -1 ([Σ i    a i b i ]/|A|   |B|   )  
 
Well   although   that   looks   real   scary,   it   really   isn’t   that   hard   to  
figure   out,   so   let’s   take   it   piecemeal.   
 
First   order   of   business,   what   is   Σ i    a i b i ?   
 
This   scary   notation   just   says   sum   up   the   corresponding  
components   of   vector   A   and   vector   B.   
 
In   this   example   Σ i    a i b i    =   a 1 b 1    +   a 2 b 2    +   a 3 b 3   
 
A 1    =   1   
A 2    =   2   
A 3    =   3   
B 1    =   -1  
B 2    =   2  
B 3    =   -3  
 
Plug   into   the   formula:   



 
Σ i    a i b i     =   1(-1)   +   2(2)   +   3(-3)   =   -1   +   4   +   -9   =   -10   +   4   =   -6   
Σ i    a i b i     =   -6   
 
Now   we   need   to   find   out   what   |A|   |B|   is,   
 
Well   luckily   this   is   really   easy,   it’s   just   pythagorean   theorem,   but  
in   three   dimensions.   
 
Recall   that   in   two   dimensions   pythag   states   that   
 
c 2    =   a 2    +   b 2   
 
In   three   dimensions,   pythag   states   that   
 
d 2    =   a 2    +   b 2    +   c 2   
 
C   is   the   value   of   |A|   when   A   is   a   vector   defined   in   two  
dimensions,   likewise,   d   is   the   value   of   |A|   when   A   is   a   vector  
defined   in   three   dimensions.   
 
Fun   fact   time!   This   trend   continues   for   any   n   number   of  
dimensions!   
 
Therefore   to   extend   this   concept   to   the   problem   we   are   tasked  
with   solving,   



 

|A|   =    √a  a  ax2 +  y2 +  z2  

 
In   the   same   way,   
 

|B|   =    √b  b  bx
2 +  y

2 +  z
2  

 
 
Plugging   into   the   above   equations,   
 

|A|   =    √(1)  (2)  (3)2 +  2 +  2  

 

|B|   =    √( )  (2)  ( )− 1 2 +  2 +  − 3 2  

 
Therefore,   
|A|   =    √14  
|B|   =    √14  
Therefore,   |A|   |B|   =   14   
 
Plugging   into   the   angle   equation,   we   get   that   
 
θ   =   cos -1 (-6/14)   =   cos -1 (-3/7)   
 



Cross   product:   
The   Cross   product   operator   is   a   vector   operator   that   determines  
the   degree   of   “dislikeness”,   basically   it’s   the   exact   opposite   of  
the   dot   product   in   every   aspect.   Meaning   this   is   a   lot   harder   to  
compute   unfortunately   :(   
 
Important   things   to   note   about   the   cross   product:  
 

1. The   result   of   the   cross   product   operator   is   a    VECTOR  
quantity,   meaning   it   has   a   magnitude    AND    a   direction.   

2. To   determine   the   direction   of   the   cross   product,   you   must  
use    the   right   hand   rule    for   cross   products.   

3. If   the   cross   product   of   two   vectors   evaluates   to   0,   those  
vectors   are   said   to   be   parallel,   or   antiparallel.   We   will  
discuss   the   rationale   behind   this   statement   later   on   when   we  
learn   how   to   compute   cross   products   of   vectors.   

4. The   cross   product   gives   us   an   indication   of   the   area   of   the  
parallelogram   formed   by   the   vectors.   

5. The   direction   of   the   cross   product   vector   is   always  
perpendicular   to   the   two   vectors.   

6. The   cross   product   is   NOT   Commutative,   A   x   B   =/=   B   x   A,  
but   A   x   B   =   -1(   A   x   B)   

 
How   to   compute   the   cross   product   of   two   vectors,   A   and   B.   



 
There   are   two   ways   of   computing   the   cross   product   or   vector  
product,   one   is   very   easy   and   the   other   is   much   harder,   but  
doesn’t   require   knowledge   of   the   angle   between   the   vectors.   
 
Equation   1:     

 
A   x   B    =   |A|   |B|   sinθ   
 
Because   sin(0)   =   0   and   sin(π)   =   0,   if   the   cross   product   is   0,   the  
vectors   are   said   to   be   parallel   or   antiparallel   respectively.   
 
Equation   2:   
 
A   x   B   =   determinant   of   the   following   matrix   

i  j  k  

a i  a j  a k  

b i  b j  b k  

 
 
A   x   B   =   (a j b k    -   a k b j )   -   (a i b k    -   b k b i )   + (a i b j    -   a j b i ) i︿ j︿ k︿   
 
Easy   way   of   memorizing   this   formula   because   i   know   it's   very  
daunting   when   you   first   see   it,   cross   out   the   row   below   and  
across   from   the   unit   vector   you   want   and   then   there   will   be   a  



smaller,   2   x   2   matrix   that   you   can   look   at.   Do   top   left   times  
bottom   right   minus   top   right   times   bottom   left,   it’ll   make   a  
cross/x   pattern.   Rinse   and   repeat   for   all   the   unit   vectors.   Only  
caveat   with   this   technique   is   that   you   need   to   remember   the  
minus   sign   before   the   j   unit   vector.   
 
What   you’re   really   doing   is   finding   what   is   called   the  
“determinant”   of   the   original   matrix   and   then   evaluating   the  
mini   2   x   2   matrices.   
 
Uses   of   the   cross   product   in   a   realistic   setting:   

1. Find   orthogonal   vector   
2. See   if   two   vectors   are   parallel   
3. Find   the   angle   between   two   vectors   

 
Given   the   fact   that   A   x   B   =   |A|   |B|   sinθ   =   (a j b k    -   a k b j )   -   (a i b k    - i︿ j︿  
b k b i )   + (a i b j    -   a j b i ) k︿   
 
Sinθ   =[ (a j b k    -   a k b j )   -   (a i b k    -   b k b i )   + (a i b j    -   a j b i )]   /    |A|   |B| i︿ j︿ k︿   
 
θ=   sin -1 ([ (a j b k    -   a k b j )   -   (a i b k    -   b k b i )   + (a i b j    -   a j b i )]   /    |A|   |B|   ) i︿ j︿ k︿   
 
Because   this   is   a   really   disgusting   process   and   it’s   extremely  
labor   intensive,   if   you   want   to   check   to   see   if   you   did   the   cross  
product   correctly,   you   can   check   it   using   the   dot   product.  



Because   the   cross   product   always   makes   a   vector,   C   that   is  
orthogonal   to   the   parent   vectors,   A   and   B,   C   dot   A   must   equal   0,  
and   C   dot   B   must   also   equal   0.   This   is   because   C   dot   A   =   |C|   |A|  
cosθ   and   cos(90)   =   0.   
  



Unit   2:   Calculus   

 
 
 
 
 



Derivatives:   
 
What   is   a   derivative?   
 
Well   the   derivative   is   a   function   that   models   the   slope   of   the  
tangent   line   on   a   certain   point   of   the   parent   function.   It’s  
basically   a   way   to   find   the   slope   between   two   infinitely   close  
points.   

 

 
 

Let’s   suppose   we   have   a   differentiable   function   (a   function   for  
which   the   derivative   exists)   called   f(x),   contained   on   this  
function   are   the   points   (x,   f(x)   )   and   (x+h,   f(x+h)   ).   
 
Recall   difference   quotient,   
 
Average   Rate   of   Change   =   =   x+h  x −

f (x+h)  f (x)−
h

f (x+h)  f (x)−  



 
Well   if   the   points   are   infinitely   close   together,   the   value   of   h   will  
approach   0,   because   at   the   value   of   0,   the   two   points   converge.   
 
Therefore   we   get   what   mathematicians   call   the   “limit   definition  
of   the   derivative”   
 
Instantaneous   Rate   of   Change   =    lim

h→0 h
f (x+h)  f (x)−  

Important   thing   to   note   is   that   the   derivative   itself   is   a   function  
and   what   it   does   is   tells   us   the   instantaneous   rate   of   change   of   a  
function   at   a   given   point.   
 
To   denote   the   derivative   of   f(x)   mathematicians   use   the   notation  
f’(x)   read   as   f   prime   of   x.   Or,   if   you’re   a   purist   you   can   write   it  
as     which   is   read   as   “the   derivative   of   f(x)   with   respect   to dx

d f (x)  
x”   
 
Example)   
 
f(x)   =   x 2   
f’(x)   =   ?   
 
To   find   the   derivative   of   f(x)   we   need   to   use   the   limit   definition  
of   the   derivative   since   that’s   the   only   method   we   know   of   right  
now.   



 
Recall   the   limit   definition   of   derivative:   
 
 
  =   f’(x)  lim

h→0 h
f (x+h)  f (x)−   

 
If   we   plug   in   h   is   0   into   the   above   equation,   we   get   0/0   which   is  
no   bueno,   so   we   need   to   do   some   algebraic   manipulation.   
 
f(x)   =   x 2  

f(x+h)   =   (x+h) 2    =   xh x2 + 2 + h2  
 
Plugging   that   into   the   limit   definition   of   derivative   yields   the  
following:   
 

=   f’(x) lim
h→0 h

x + 2xh + h   x2 2 − 2   

 
That   looks   really   messy,   but   it   actually   is   quite   nice   because  
things   cancel.   
 

=   f’(x) lim
h→0 h

 2xh + h  2
 

 
If   we   plug   in   h   =   0   into   the   above   equation   we   still   get   0/0,   so  
we   need   to   continue   to   simplify.   



=   f’(x) lim
h→0 h

 h(2x+h)   

 
The   h’s   cancel   leaving   us   with   the   following   equation:  
 

  =   f’(x) 2x lim
h→0

 + h   

 
Plugging   in   h   =   0   gives   us   
 
f’(x)   =   2x   +   0   
 
f’(x)   =   2x   
 
Notice   anything   special   about   the   exponent   of   the   parent  
function   and   the   coefficient   of   the   derivative   function?   
 

Power   rule:   
 

Power   rule   can   only   be   used   for   polynomial   functions,   or  
functions   that   have   a   varying   base,   but   constant   exponent   i.e.   x 2   
 

Power   rule   states   that   for   any   polynomial   function   expressed   in  
terms   of     its   derivative   is   xn xn n 1−  
 
Examples:   



1) f(x)   =     f’(x)   =   x3 x3 2  
2) f(x)   =    f (x) 4x  x4 ′ =  3  
3) f(x)   =    f (x) 1x  1  x ′ =  0 =   
4) f(x)   =   x x2 3 = 6 2  

 

Constant   rule:   
 

Because   the   derivative   represents   the   slope   of   the   tangent   line   of  
the   parent   function   at   a   given   point,   if   the   function   does   not  
increase   or   decrease   ever,   the   derivative   of   it   is   0.   The   only   case  
that   this   occurs   is   when   the   function   we   are   taking   the   derivative  
of   is   in   the   form   f(x)   =   k   where   k   is   some   constant   such   as  
1,2,3,4,   etc.  
 
Ie.   f(x)   =   141341823471928043018347140   f’(x)   =   ?   
 
Well   f(x)   doesn’t   vary   in   terms   of   x   so   when   we   take   its  
derivative   it   just   turns   out   to   be   0,   because   that   function   is   a  
horizontal   line   and   so   the   slope   of   the   tangent   line   is   0   always.   
 
f’(x)   =   0.   
 

Trigonometric   functions:   
f(x)   =   sin(x)   



f’(x)   =   cos(x)   
f’’(x)   =   -sin(x)   
f’’’(x)   =   -cos(x)   
f’’’’(x)   =   sin(x)   
 
Y   =   tan(x)   
Y’   =   ec (x) s 2  
 
g(x)   =   cot(x)   
g’(x)   =   sc (x) − c 2  
 
h(x)   =   sec(x)   
h’(x)   =   sec(x)   tan(x)   
 
j(x)   =   csc(x)   
j’(x)   =   -csc(x)   cot(x)   

Chain   Rule:   
 

If   a   function   is   written   in   terms   of   a   composition   of   functions  
then   you   must   use   chain   rule.   
 
If   y   is   a   composition   of   f(x)   and   g(x),   y’   =   f’(g(x))   g’(x)   
 
Example)   
 



Y   =   in(x ) s 2  
Y’   =   os(x ) 2xc 2  
 
f’(g(x))   =   cos(x 2 )   
g’(x)   =   2x   
f(x)   =   sin(x)   
g(x)   =   x 2  
 
Example)   
 
Y   =   an (2x ) t 3 2  
Y’   =   tan (2x ) 4x sec (2x ) 12xtan (2x )sec (2x )3 2 2 2 2 =  2 2 2 2  
 
  

 
 
 
 
 
  



Integrals:   

 

What   is   an   integral?   
 
Well   in   its   simplest   form,   the   integral   is   a   way   of   calculating  
area   under   a   curve,   much   of   the   time,   calculating   the   area  
between   a   given   curve   and   the   x-axis,   though   not   always.   
 
Way   before   any   of   us   were   born   there   was   a   man   named  
Reimann   and   he   became   famous   for   what   is   called   a   Riemann  
Sum,   which   is   the   way   that   the   old   people   did   area   under   the  
curve   calculations.   Basically   what   he   did   was   he   made   a   bunch  
of   rectangles   underneath   the   curve,   what   he   found   was   that   the  
more   rectangles   you   had   underneath   the   curve,   the   more  
accurate   the   area   measurement   was.   
 



As   you   can   see,   there   is   less   white   space   in   the   last   picture  
between   x   =   a   and   x   =   b   than   there   is   in   the   other   pictures,   hence  
the   area   is   more   precise   as   the   number   of   rectangles   approaches  

. ∞   
 
Recall   that   Area   of   a   rectangle   is   A   =   base   *   height.   
 
Well   the   height   of   the   rectangle   is   dictated   by   the   curve   in  
question,   or   y,   and   the   base   of   the   rectangle   is   dictated   by   the  
number   of   rectangles   in   the   range   given.   
 
Hence   Riemann   stated   that   
 

Area   =   ( )f (x )lim
n→∞ ∑

n

k=1
n

b a−
k  

 
But   that   looks   really   disgusting   so   instead   mathematicians   write  
that   same   thing   like   this,   in   terms   of   an    integral .   
 



=   (x) dx∫
b

a
f ( )f (x )lim

n→∞
∑
n

k=1
n

b a−
k  

 

The   integral     is   really   saying,   add   up   the   small   areas   of (x) dx∫
b

a
f  

the   rectangles   encapsulated   by   the   curve   f(x)   on   the   interval  
[a,b]   ,   where   the   height   of   the   rectangles   is   f(x)   and   the   base   of  
the   rectangles   is   dx,   an   infinitely   small   range   of   x   values.   
 
Well   now   that   we   know   the   history   and   what   visually   the  
integral   is,   let’s   focus   ourselves   on   actually   computing   one!   
 

Anti-power   rule:   

 
This   is   basically   gonna   be   like   power   rule   for   derivatives,   but   it's  
going   to   be   the   exact   opposite.   Anti-power   rule   states   for   an  
integrable   function,   f(x)   expressed   in   terms   of   a   polynomial,   
 

this   only   works   if   n   -1 (x) dx  dx x∫
 

 
f =  ∫

 

 
xn =  n+1 1

n+1 + C =  /  

 



Memorized   ones:   

dx ln(x) C∫
 

 
x
1 =  +   

 
Integrals   are   the   opposite   of   derivatives,   if   you   take   the  
derivative   of   the   integral   of   a   function,   you   get   whatever   is   in  
the   integrand.   
 

I.e.   =   y x dx x   ∫
 

 
2 =  2 + C   

Y’   =   2x   
 
Recall   that   y’   can   be   written   as   dx

dy  
 

=   2x dx
dy   

 
y 2x dxd =   

 
Integrate   both   sides   
 
Remember   integrals   are   really   adding   stuff   up,   so   if   you   add   up  
a   bunch   of   small   chunks   of   y,   or   dy,   then   you   get   the   whole   y.  

Therefore   . y y∫
 

 
d =   



y x dx∫
 

 
d = ∫

 

 
2  

 x  y =  2 + C  
 
The   C   results   because   technically   if   we   took   the   derivative   of   y  
with   respect   to   x   we   would   get   2x   regardless   of   what   #   C   is,   be   it  
1,2,3,   248932843848,   etc.   so   C   is   just   an   arbitrary   constant   that  
you   can   solve   for   if   they   give   you   a   point   that   lies   on   the   graph  
y.   
 
  



 

Unit   3:   Kinematics   

X f    =   X i    +   V i t   +   at 2 
2
1  

V f    =   V i +   at   
V f 2    =   V i 2    +   2aΔx   
V avg    =   Δt

Δx  
V   =   dt

dx  
A avg    =   Δt

Δv  
A   =   dt

dv  

A   =   
dt2
d x2  

V(t)   =   (t) dt∫
 

 
a   



X(t)   =   (t) dt∫
 

 
v  

Perpendicular   vectors   are   independent   of   each   other.   
Rest   means   V   =   0   m/s   
 

Two   dimensional   kinematics:   

 
Procedure:   
Separate   the   x   and   y   components   of   the   motion.   
REMEMBER   VELOCITY,   ACCELERATION,   AND  
DISPLACEMENT   ARE   ALL   VECTOR   QUANTITIES!!!!  
THEY   HAVE   DIRECTION   SO   PICK   A   POSITIVE   AND  
NEGATIVE   DIRECTION.   
 
Example:   
 
A   soccer   player   kicks   a   soccer   ball   with   an   initial   velocity   of   50  
m/s   at   an   angle   of   30   degrees   with   respect   to   the   horizontal.   
 
X   direction  Y   direction  
V i    =   50   m/s   *   cos(30)  V i    =   50   m/s   *   sin(30)  
V f    =   Vi  V f    =   n/a   
A   =   0   m/s^2  a   =   -g   
 



At   time   t/2   the   velocity   of   the   soccer   ball   in   the   y   direction   is   0  
m/s,   remember   SYMMETRY   IS   YOUR   FRIEND!  
 
When   a   is   0   the   only   formula   you   can   use   that   will   help   you   is   
 
X f    =   X i    +   V i t   +   at 2 

2
1  

 
Most   often   we   make   the   initial   position   of   the   object   =   0  
therefore   the   formula   is   
 
X f    =   V i t   +   at 2 

2
1  

 
In   the   x   direction   a   is   0   therefore   
 
X f    =   V i t   

 
Example:   
 
A   rock   rolls   down   a   50   m   cliff   with   a   horizontal   speed   of   10   m/s,  
where   should   Joe   put   his   target   to   have   the   rock   hit   it   exactly   on  
the   bullseye?   
 
Right   is   positive,   down   is   positive   
 
X   direction  Y   direction  



X   =   ? X   =   50   m  
V i    =   10   m/s  v i    =   0   m/s  
V f    =   10   m/s  v f    =   
A   =0   m/s^2  a   =   g   
T   =  t   =   ?   
 
REMEMBER   THE   TIME   IN   BOTH   DIMENSION   IS   THE  
SAME!!!  
 
Y   direction:   
 
X f    =   X i    +   V i t   +   at 2 

2
1  

X f    =   at 2 
2
1  

2X f    =   at 2  

2X f    /a     =   t 2  

T   =    √2X af /  

T   =    √2X gf /   

T   =    √2(50m) 10m s/ / 2  
T   =   s  √10  
 
X   direction:   
 
X f    =   X i    +   V i t   +   at 2 

2
1  

X f    =   V i t   



X f    =   10   m/s   *   s  √10  
 
  



Unit   4:   Dynamics   

 

Newton's   three   laws:   
1. A   body   in   motion   tends   to   stay   in   motion,   also   called   the  
law   of   inertia.   
2. Our   best   friend   aka   F net    =   ma   
3. Every   action   has   an   equal   and   opposite   reaction.   
 



Inertia:   
Inertia   α   mass.   
Resistance   to   change   in   velocity.   
 
F net    =   ma:   
Remember   a   force   is   a   vector   quantity   and   it   has   direction.   Make  
sure   your   positive   and   negative   directions   are   consistent.   IF   THE  
VELOCITY   IS   CONSTANT,   THE   OBJECT   IS   IN  
EQUILIBRIUM!   
F net    =   m dt

dv  

F net    =   m 
dt2
d x2

 

F fs      μ s    F n ≤   
F fk    =   μ k    F n   
F drag    =   kv   or   kv 2   
F spring    =   -kx   
F gravity    =   mg   
F gravity    =   G   r2

m m1 2  
F electrostatic    =   qE  
F electrostatic    =   k   r2

q q1 2  

F centripetal    =   m   r
v2

 
 



Example:   masses   m 1    and   m 2    are   attached   to   a   massless   rope   and  

a   pulley   of   negligible   mass   and   frictionless   girders.   m 1    is  
situated   on   a   frictionless   surface,   and   when   the   masses   are  
released,   m 2    descends   with   an   acceleration,   a.   Find   the   tension   in  
the   rope.   
 
Setup:   
 
Draw   free   body   diagrams   of   each   mass   individually  
Down   is   positive   and   right   is   positive   
 
 
FBD   of   m 2   
F tension    upwards,   F gravity    downwards   
 
ΣF y    =   F gravity    -   F tension    =   m 2 a   
ΣF y    =    F gravity    -   m 2 a   =   F tension   
ΣF y    =   m 2 g    -   m 2 a    =   F tension  



 
Therefore   the   tension   is   m 2 g    -   m 2 a  
 
Example:   
An   object   of   mass   m   is   on   an   inclined   plane   and   is   sliding   down  

at   a   constant   velocity   as   shown   in   the   diagram.   Find   the  
coefficient   of   kinetic   friction   for   which   the   box   would   have   a  
constant   velocity.   
Down   the   ramp   is   positive,   into   the   ramp   is   positive.   
ΣF x =   ma x   
ΣF x    =   mgsinθ   -   F fk    =   0   
VELOCITY   IS   CONSTANT   THEREFORE   IT   IS   IN  
EQUILIBRIUM!!!    
ΣFx   =   mgsinθ   =   F fk    =   μ k    F n   
 
ΣF y    =   mgcosθ   -   F n     =   ma y  

ΣF y    =   mgcosθ   =   F n   



ΣF x    =   mgsinθ   =   μ k F n  

ΣF x    =   mgsinθ   =   μ k mgcosθ   
 
Therefore,   
 
μ k    =   mgsinθ/mgcosθ   
μ k    =   sinθ/cosθ  
μ k    =   tanθ   
 
Remember   that   F net    =   ma   can   be   used   to   bridge   kinematics   with  
the   dynamics   that   we   learned   in   this   chapter.   
 
For   uniformly   accelerated   motion   that   is   caused   by   a   force  
applied,   the   acceleration   is   such   that  
 
F net    =   ma   
Therefore   
A   =   m

F  net  

Uniform   circular   motion:  

 
F net     =   ma c   

A c    =   r
vt

2

 
T   =   f

1  

=   f  
 

1
T  



 
Recall   v t    =   r   ω   
 
Therefore,   

A c    =   r
(rω)2

 

A c    =   r
r ω2 2

 
A c    =   rω 2  

 
The   object   is   moving   in   a   circle,   therefore   it   is   moving   a  
distance   2πr   (circumference   of   the   circle)   in   a   time   T   (the   period  
of   the   motion)   
 
Therefore,  
 
V t    =   T

2πr  
 
Therefore,   

A c    =   r
( )T

2πr 2

 

A c    =   T r2
4π r2 2  

A c    =   T 2
4π r2

 

A c    =   π rf4 2 2  
 
In   any   circular   motion   problem,   YOU   NEED   TO   IDENTIFY  
WHICH   FORCE   IS   CAUSING   IT   TO   GO   IN   A   CIRCLE!!!  



 
Example)   A   planet,   P   with   mass   m p    is   revolving   around   a   star,   S  
with   an   orbital   velocity   of   v   and   mass   m s .   Find   the   distance   the  
planet   is   away   from   the   sun.   
 
ΣF c    =   ma c   

F gravity    =   m p r
vt

2

 

Gm p m s /r 2    =   m p r
vt

2

 
Gm p m s /r   =   m p v 2  

Gm s /v 2    =   r   
Find   the   period   of   the   motion.   
ΣF c    =   ma c   

Gm p m s /r 2    =   m p r
vt

2

 

Gm s /r 2    = r
vt

2

 
Gm s /r   = v2  
Gm s /r   =   )( T

2πr 2  

Gm s /r   =   T 2
4π r2 2  

=   Gms

4π r2 3
1

T 2  

=   Gms

4π r2 3 T 2  

=   T  √ Gms

4π r2 3  

 
Plugging   in   the   formula   for   the   distance   between   the   planet   and  
the   star  



 

T   =    √ Gms

4π (Gm v )2
s/ 2 3

 

 
 

Nonuniform   circular   motion:   

 
Sometimes,   such   as   the   case   in   a   vertical   loop,   the   force   causing  
the   centripetal   acceleration   is   not   constant.   
 
The   force   that   points   in   the   direction   of   the   center   of   the   circle   is  
gravity   when   the   object   is   on   the   top   of   the   loop   and   is   barely  
holding   on.   
 
Therefore,   
 
ΣF c    =   ma c   
F gravity    =   ma c   
Mg   =   ma c   
g   =   r

v2
 

gr   =   v2  
V   =   √rg  
 



At   the   bottom   of   the   ramp,   the   forces   acting   on   it   is   the   normal  
force   and   the   force   due   to   gravity.   
 
ΣF c =   ma c   

 
F n    -   F gravity    =   ma c   
 
F n    =   ma c    +   F gravity   
 
Therefore,   the   normal   force   needs   to   be   greatest   at   the   bottom   of  
the   ramp   and   so   if   you   were   to   swing   an   object   on   a   string   and  
made   a   vertical   circle   with   it,   the   object   would   most   likely   break  
at   the   bottom   of   the   loop.   
 
It   is   important   to   note   that   the   normal   force   acting   on   the   top   of  
the   ramp   as   opposed   to   the   bottom   of   the   ramp   differs   by   a  
factor   of   2mg.   
 
Top   of   the   ramp:   
 
ΣF c    =   ma c   

 
F n    +   F gravity    =   ma c   
 
F n    =   Ma c    -   F gravity   
 



Bottom   of   the   ramp:   
 
ΣF c    =   ma c   
 
F n    -   F gravity    =   ma c   

 
F n    =   Ma c    +   F gravity   

 

 
 
 
 



Unit   5:   Work,   power,   and   energy   

 

Work   done   by   a   Force:  

In   General:  

 rW =  ∫
b

a
F ⋆ d  

REMEMBER:  
Work   can   be   a    negative    measurement   and   it   is   the   dot   product   of  
the   force   vector   and   the   displacement   vector.  



If   Force   is   constant   then   get   the   component   that   is   causing   it   to  
bring   in   motion.   This   means   breaking   up   it   into   X   and   Y  
components,   or   parallel   and   perpendicular   components  

 F xcosθW =   
 F  xW =  •   

 ΔKE KEW total =  =  f − KEi  
Conservative   Forces   (Force   due   to   gravity,   etc.)   does   not   depend  
on   the   path   taken.   Measure   the   start   to   end   path   and   measure   the  
work   done  
Non-Conservative   forces   (Force   of   friction,   etc.)   depend   on   the  
path   taken.   Measure   the   total   Distance   (x)   and   calculate   the  
work   done  

Power:  
Power   is   how   fast   work   is   done  

 F vP =   
 P =  dt

dW  

 

 

Conservation   of   Energy:  

KEi + P Esi + U i + W nc = KEf + P Esf + U f  



Very   rarely   will   all   components   be   used.   Remember   to   get   each  
of   the   components   of   each   force   to   get   the   work   done   on   the  
object.  
 
KE   =   mv2

1 2  
 
KE rotational    =   ½   Iω 2   
 
U g    =   r

Gm m− 1 2  
 
(for   things   really   far   away   like   in   space)   
 
U g    =   mgh   
(for   things   close   to   the   surface   of   the   earth,   this   is   because   g  
varies   as   a   function   of   distance,   and   close   to   the   earth   g   is  
relatively   constant.)   
 
W Fgravity    =   -ΔU g   
F gravity    =   dx

dU− g  
dx UF gravity =  − d g  

dx ∫
 

 
F gravity =  − U g  

 dx U− ∫
 

 
F gravity =  g  

U spring    =   kx2
1 2  

(only   for   a   spring   that   obeys   Hooke’s   law)   



 
Derivation   of   the   U spring   
 
F spring    =   -kx  

Recall   that   in   general   (x) dxU conservative =  − ∫
 

 
F conservative  

Therefore,   

 x dxU spring =  ∫
 

 
k  

U spring    =   kx2
1 2  

W nonconservative    =   ΔE   
 
Remember,   Work   is   a   vector   dot   product,   so   you   need   to   find   the  
component   of   the   force   that   is   in   the   direction   of   the  
displacement.   
W   =   F x    *   x x    +   F y    *   x y    +   F z    *   x z   

 
 



Unit   6:   Center   of   mass   and   momentum   

 
F   =   ma   
F   =   m Δt

Δv  
P   =   mv   
F   =   Δt

Δp  
FΔt   =   Δp   
Δp   =   J   
J   =   mv f    -   mv i   



Σm   *   x cm    =   Σx*m   

  x cm    =   m∫
 

 
d  dm∫

 

 
x  

REMEMBER,   LINEAR   MOMENTUM   IS   ALWAYS  
CONSERVED   IF   THERE   IS   NO   IMPULSE   ACTING   ON   THE  
SYSTEM!!!   THIS   MEANS   THAT   IN   ANY   COLLISION,  
MOMENTUM   IS   ALWAYS   CONSERVED!!   
 
What   is   a   system,   though?   Easiest   way   to   explain   a   system   is  
that   if   you   were   to   draw   an   imaginary   dotted   line   around   the  
objects   in   question   and   no   one   is   pushing   or   pulling   from  
outside    the   dotted   line,   there   is   no   impulse   on   the   system,  
therefore,   momentum   is   conserved.   
 
Because   velocity   is   a   vector   quantity,    momentum   is   a   vector  
quantity    as   well.   Therefore,   it   has    direction   and   a   magnitude.  
Choose   the   direction    you   want   to   make   positive   and    keep   it  
consistent .    You   must   separate   momentum   into   x,y,   and   z  
components   if   necessary    and   you   are   dealing   with   a   2   or   3  
dimensional   collision.   
 

Types   of   collisions:   

 



Elastic   Collisions:  
 
In   an   elastic   collision,   both   momentum   and   total   kinetic   energy  
are   conserved.   Often   times,   this   means   that   you   will   need   to   set  
up   a   system   of   equations   to   find   the   resultant   velocities   because  
this   can   occur   in   a   number   of   ways.   KE final    =   KE initial    and   P before    =  
P after .   These   almost   never   occur,   the   closest   approximation   we  
have   to   an   elastic   collision   is   collisions   between   gas   molecules  
and   even   those   aren’t   perfectly   elastic,   Cassin   would   be   so   proud  
:   )   .   

Inelastic   collisions:   
Two   cases   for   inelastic   collisions,   can   either   be   inelastic   or  
perfectly   inelastic.   Perfectly   inelastic   collisions   are   when   the  
two   objects   stick   together   after   the   collision.   In   these   types   of  
collisions,   KE   is   not   conserved   and   some   of   it   is   lost   as   heat   or  
another   form   of   energy   such   as   sound.   
 
Example)   on   a   highway   intersection,   Joseph   is   driving   his  
Bugatti   Veyron   Supersport   (mass   100   kg)   and   reaches   a   speed   of  
100   m/s   (Joe   is   a   bad   boy   and   likes   to   live   life   on   the   edge)   when  
he   then   collides   with   Ethan,   who   is   driving   his   Lamborghini  
Aventador   (mass   110   kg)   at   a   speed   of   85   m/s   (Ethan   is   a   bit  
more   prudent)   in   the   opposite   direction.   After   the   collision,   the  



two   cars   stick   together   to   form   a   composite   body   (poor   Joe   and  
Ethan),   find   the   speed   of   this   composite   body.   
 
ΣP before    =   ΣP after   
 
M 1 v 1    -   m 2 v 2    =   (m 1 +m 2 )   v composite   
 
V composite    =   (M 1 v 1    -   m 2 v 2 )/(m 1 +m 2 )  
Plug   in   and   solve   

 
 
 
 

  



Unit   7:   Rotational   motion  

 
S   =   θr   
ω average    =   Δt

Δθ  
ω   =   dt

dθ  
V center   of   mass    =   ωr   
A center   of   mass    =   αr   
α average    =   Δt

Δω  
α   =   dt

dω  
τ   =   r   X   f   =   -1(F   x   r)   



Στ   =   Iα   
*I   =   mr 2    only   for   a   point   particle,   NOT   a   solid   object.  

  **I   =    dm∫
 

 
r2  

This   equation   is   derived   from   the   point   particle   equation   for  
moment   of   inertia,   basically   we   are   isolating   little   point   masses  
along   the   object   which   all   have   a   mass,   dm   and   we   are   adding   all  
of   their   individual   contributions   to   the   total   moment   of   inertia   of  
the   whole   solid   object.   The   whole   is   equal   to   the   sum   of   its  
parts,   therefore   the   integral   is   a   valid   equation.   
 
I   for   a   solid   cylinder   about   center   =   1/2   MR 2   
I   for   a   solid   rod   about   center   =   1/12   MR 2  

I   for   solid   rod   about   end   =   1/3   MR 2  

Parallel   axis   theorem:   I new    =   I center   of   mass    +   Md 2  

 
TORQUE   IS   A   VECTOR   QUANTITY   AND   IS   A   VECTOR  
PRODUCT   OF   DISPLACEMENT   AND   FORCE.   
 
Τ   =   Fxsinθ   
 
The   direction   of   the   torque   is   determined   by   the   right   hand   rule,  
whereby   you   stick   your   fingers   in   the   direction   of   the  
displacement   and   curl   them   toward   the   line   of   action   of   the  
force.   
 



Δθ   =   ω i t   +   αt 2 
2
1  

 
ω f =   ω i +   αt  
  

ω  2αtωf
2 =  i

2 +   
L   =   Iω   
 
Angular   momentum   is   always   conserved   so   long   as   the   external  
torque   acting   on   the   system   is   0   
 
Στ   =   I   α   
Στ   =   I   dt

dω  

Στ   =   I   
dt2
d θ2

 

Στ   =   dt
dL  

 
KE rotational    =   Iω2

1 2  
 
Rolling   without   slipping   only   conditions:   
 
V cm    =   v t    =   rω  
A cm    =   a t     =   rα  

 



 

Unit   8:   Simple   Harmonic   Motion   and   Gravity  

 
X(t)   =   Acos(ωt)   
V(t)   =   dt

d x(t)  
V(t)   =   -Aωsin(ωt)   
A(t)   =   dt

d v(t)  
A(t)   =   -Aω 2 cos(ωt)   



T   =   2π   1
ω  

V max    =   A   ω   
a   =   -ω 2 x   
ω   angular   speed   =   ω   angular   frequency   
f   =   1/T   
T   =   1/f  

T   for   a   mass   spring   system   only   =   2π    √ k
m  

T   for   a   pendulum   only   =   2π    √ l
g  

T   for   a   solid   pendulum   =   2π    √ 2l
3g  

F gravity    =   mg   =    G     =   (m     ONLY   IF   ITS   IN   ORBIT   AND r2
m m1 2

r
v2

 
THE   GRAVITATIONAL   FORCE   ACTS   AS   THE  
CENTRIPETAL   FORCE)   

  A 4πMΦgravitational =  ∮
 

 
g • d =  − G enclosed  

 gAΦgravitational =   

 g =  m
F graviational  

 G g =  r2
m1  

 

Orbital   velocity   determined   by   the   following   setup:   

 
ΣF c    =   ma c   
 



F gravity    =   m   r
v2

 
 
  G   =    m 2    r2

m m1 2
r
v2

 
 
  Solving   for   V:   
 
G     =   r

m1 v2   
 

Therefore   V   =    √G r
m1  

 

Escape   velocity   is   determined   by   the   following   setup:   

 
ME f    =   ME i    +   W nonconservative   
 
W nonconservative    =   0   ,Therefore,   ME f    =   ME i  
 

  +   =   +   mv2
1

escape
2

rp

Gm m− 1 2 mv2
1

f
2

r
Gm m− 1 2   

 
Escape   velocity   is   defined   as   the   minimum   speed   that   you   must  
attain   in   order   to   escape   the   gravitational   pull   of   earth   or   some  
planet   therefore   v f    =   0  
 



Because   the   object   approaches   an   infinite   distance   away   from  
the   planet,   to   calculate   the   gravitational   potential   energy   at   that  
distance,   we   must   take   when   we   evaluate   this   limit, lim

r→∞ r
Gm m− 1 2  

we   get   ∞
Gm m− 1 2  

which   gives   us   =   0 lim
r→∞ r

Gm m− 1 2   

 
This   makes   the   right   side   evaluate   to   0   
 
Therefore:     =   mv2

1
escape

2
rp

Gm m1 2  

 
Therefore:     =   2 vescape

2
rp

Gm m1 2  

Therefore:     =   vescape  √2 rp

Gm m1 2  

 
Note   that   the   escape   velocity   differs   from   orbital   velocity   by   a  
factor   of    √2  
 

  



Unit   9:   Electrostatics   

F electrostatic    =   qE   
F electrostatic    =   k   r2

q q1 2  
E   =   k   r2

q1  

E   =   q
F electrostatic  



U electrostatic    =   k   r
q q1 2  

U electrostatic    =   qV   
V   =   q

U electrostatic  
V   =    k r

q1  

V   =    ∫
 

 
k r

dq  

E   =    ∫
 

 
k r2

dq  

V   =   E   x  

V   =   -  dx∫
p

∞
E  

E   =   dx
dV−  

  dxW electrostatic =  − ∫
p

∞
F electrostatic  

EΦelectric =  • A  

 A Φelectric =  ∮
 

 
E • d =  q

ε0
 

 λ =  q
X  

 σ =  q
A  

 ρ =  q
V  

 k =  1
4πε0

 

 
 
 



 
 
 
 

How   to   draw   electric   field   lines:   

 
In   order   to   draw   electric   field   lines,   you   must   pretend   to   place   a  
tiny   imaginary   positive   charge,   or   TIPC   and   see   how   it   would  
react   to   the   source   charge.   Or   in   other   words,   if   it   would   attract  
or   repel.   

 

Because   like   charges   repel,   we   see   that   the   electric   field   lines   are  
away   from   the   positive   charge,   and   because   opposites   attract,   we  
see   that   the   electric   field   lines   are   towards   the   negative   charge.  



Electric   field   lines   CANNOT   intersect   and   they   must   hit   the  
source   charge   at   a   90   degree   angle.   
 

Equipotential   lines:   

 
Lines   that   are   drawn   that   indicate   that   the   work   done   to   move   a  
positive   charge   to   that   location   from   infinitely   far   away   is   the  
same   all   along   the   line.   Any   movement   along   an   equipotential  
line   requires   0   J   of   work   to   be   done.   

 



See   above   figure,   the   red   dotted   lines   are   equipotential   lines  
because   from   all   directions   it   requires   an   equal   amount   of   work  
to   move   a   charge   to   any   point   along   the   dotted   line.  

 

  



What   is   Electric   Potential   Energy   (EPE   or   U electrostatic )?  

Electric   potential   energy   is   the   amount   of   energy   stored   in   the  
electric   field   at   a   given   location.   In   other   words,   how   much  
energy   must   be   exerted   to   move   a   test   charge   from   an   infinite  
distance   away   to   the   point   of   interest.   The   Electric   Potential  
Energy   can   be   computed   easily   using   the   work   formula,   see   the  
work   chapter   to   get   brushed   up   on   that.   The   negative   sign   in   the  
formula   included   in   the   beginning   of   this   chapter   is   included  
because   the   force   applied   to   move   the   force   is   in   the   direction  
opposite   that   of   the   electrostatic   force.   The   rest   should   be   stuff  
that   should   be   intuitive.   The   fact   that   the   electrostatic   force   has   a  
potential   energy   term   means   that   it   is   a    conservative   force ,   this   is  
important,   because   it   makes   Work   Power   and   Energy   problems  
involving   charges   much   easier   to   do.   Other    conservative   forces  
that   we   have   discussed   thus   far   include   the    gravitational   force  
and    spring   restoration   force .   
 
  



 

What   is   Electric   Potential/   Voltage?  

Electric   potential,   NOT   to   be   confused   with   Electric   Potential  
Energy,   is   the   amount   of   energy   that   must   be   exerted   to   get   a  
charge   to   the   point   of   interest   (EPE)   per   coulomb   of   charge.   
 
Hence   V   =   q

U electrostatic  
 
Voltage   is   the   energy   analogue   of   Electric   field,   in   the   same   way  
that   the   electric   field   tells   you   the   electrostatic   force   per   unit  
charge,   voltage   tells   you   the   Electric   Potential   Energy   per   unit  
charge.   
  



How   charges   behave   in   insulators   and   conductors:   
 

The   most   fundamental   principle   to   understand   in   order   to   have  
an   understanding   of   how   charged   particles   interact   in   insulators  
and   conductors   is   that   like   charges   repel   and   opposite   charges  
attract.   
 
In   a   conductor,   the   material   has   a   lot   of   free   moving   electrons,  
meaning   that   they   can   move   internally   and   as   such   they   all   move  
to   the   outside   edges   because   they   don’t   like   each   other   and   repel.  
This   means   that   if   you   were   to   be   locked   in   a   metal   cage   in   the  
middle   of   a   thunderstorm   and   a   lightning   bolt   hit   the   cage,   you  
would   be   completely   safe.   The   electrons   present   in   the   lightning  
bolt   would   repel   each   other   and   so   they   would   only   be   present  
on   the   outermost   skin   of   the   cage,   effectively   making   the   cage  
act   as   a   shield.   
 
In   an   insulator,   the   material   has   electrons   that   are   locked   in  
place,   they   cannot   move,   and   as   such,   if   an   insulator   is   charge,  
the   charge   will   not   be   evenly   distributed   on   the   outside   skin,   but  
will   instead   be   distributed   unevenly.   
 
 

Ways   to   charge   objects   and   conservation   of   charge:   
 



There   are   a   myriad   of   ways   to   charge   objects   in   real   life,   the   list  
is   as   follows:   
 

1. Charging   through   conduction/contact  
2. Charging   through   induction   

 
To   charge   something   through   contact,   you   must   take   a  
conducting   sphere   of   either   negative   or   positive   charge   and  
make   it   touch   another   conducting   sphere.   What   this   will  
effectively   do   is   cause   the   electrons   that   are   repelling   each   other  
on   the   side   that   makes   contact   to   run   to   the   other   object,   causing  
that   object   to   be   negatively   charged.   Likewise,   if   the   original  
sphere   was   positively   charged,   the   sphere   that   makes   contact  
will   also   become   positively   charged.    The   conservation   of   charge  
principle   states   that   if   the   original   sphere   had   a   charge   of   -2μC  
then   when   it   makes   contact   with   the   other   sphere,   both   will   end  
up   having   -1μC.   -1μC   +   -1μC   =   -2μC.   See   below   figure   to   see  
how   this   happens.   
 
  



To   charge   something   through   induction,   you   must   have   a  
negatively   charged   object   and   put   it   close   to   a   neutral   object  
such   that   it   is   just   barely   NOT   touching   and   have   that   neutral  
object   be   connected   to   ground.   What   this   will   do   is   cause   the  
electrons   in   the   object   it   is   just   barely   NOT   touching   to   run   away  
from   the   excess   negative   charge,   making   them   go   to   ground.   The  
end   result   is   that   the   formerly   neutral   object   is   now   positively  
charged   because   the   electrons   escaped   to   ground.   See   the   below  
diagram   for   a   pictorial   representation   of   this.  

 
  



 

Electric   Flux:  

So   electric   flux   sounds   really   intimidating   and   complicated,   it’s  
really   not.   All   electric   flux   is   the   number   of   flux   lines   that   you  
draw   from   the   charge   that   hit   a   surface   in   the   same   direction   as  
the   vector   normal   to   the   surface.   See   below   figure   for   a   pictorial  
representation   of   this   phenomena.   It   is   the   dot   product   of   the  
electric   field   and   the   area’s   normal   vector,   see   the   vector   chapter  
to   know   what   a   dot   product   is.   

 
 
 
  



The   fan   favorite,   Gauss’   Law   :)   
 

  Gauss   Law   is   a   law   of   physics   that   can   be   used   for   highly  
symmetric   scenarios   to   easily   calculate   the   electric   field  
strength(E)    at   a   point   of   interest,   p,   remember,   symmetry   is  
your   friend.   Gauss   came   up   his   formulation   of   the   law   that   bears  
his   name   by   investigating   the   relationship   between   electric   flux  
and   three   dimensional   closed   surfaces.   
 
Gauss   Law   is   expressed   as   a   closed   surface   integral   and   the   full  
equation   is   the   following:   
 

  dA Φelectric =  ∮
 

 
E •  =  ε0

qenclosed   

 
Now   that   looks   extremely   scary,   like   why   is   there   an   integral  
with   a   fancy   circle   in   it   and   why   is   it   a   vector   dot   product,   but  
luckily   the   dot   product   AND   the   integral   will   dissolve   if   you   use  
this   law   correctly.   
 
Conditions   that   must   be   met   to   effectively   use   Gauss   Law:   
 

1. Make   an   imaginary   3-D   CLOSED   surface   (a   lot   of   time   it's  
a   sphere   or   a   cylinder)   



2. The   surface   that   you   chose   must   make   the   field   lines   hit   it  
either   perfectly   perpendicularly   in   some   or   all   parts,   or   is  
parallel   to   the   field   lines   in   some   or   all   the   parts.   THERE  
CANNOT   BE   A   PART   OF   THE   SURFACE   THAT   HAS  
AN   ANGLE   THAT   IS   NOT   EITHER   0   OR   90   WITH  
RESPECT   TO   THE   FIELD   LINES.   

3. The   Electric   field   must   be   constant   along   all   parts   of   the  
surface   of   your   choice.   

 
 
 
 
 
 
 
 
 
 
 

See   above   figure,   the   black   line   is   a   infinitely   long   positively  
charged   rod.   The   Blue   cylinder   is   the   Gauss   surface   that   we  
would   use.   
 
Example)   
 



Let’s   suppose   we   have   an   infinitely   long   rod,   with   linear   charge  
density   λ,   find   the   electric   field   strength   as   a   function   of  
distance,   r   outside   the   rod.   
 
First   we   should   draw   the   situation   so   we   can   visualize   it   and   can  
make   the   appropriate   Gaussian   Surface.   

 
 
 
 
 
 
 
 
 

We   will   make   a   cylindrical   Gaussian   surface   oriented   as   shown  
above   because   along   the   curved   part   of   the   surface   the   field   lines  
are   penetrating   it   perpendicularly,   while   the   top   and   bottom   are  
parallel   to   the   field   lines.   The   distance   from   the   rod   is   also  
constant   from   any   outside   point   of   the   cylinder,   therefore   the   E  
is   constant.   
 
Because   the   E   is   constant,   the   integral   dissolves.   
 
Because   the   angle   that   the   electric   field   lines   hit   the   surface   are  
either   perfectly   90   or   0   degrees,   the   dot   product   dissolves.   



  dA Φelectric =  ∮
 

 
E •  =  ε0

qenclosed  

This   equation   now   becomes   
 

 EA Φelectric =  =  ε0

qenclosed  

 
Now   the   question   becomes   how   much   charge   is   enclosed   by   the  
cylinder.   
 
Well   luckily   for   us,   the   rod   has   a   uniform   linear   charge   density.   
 

 λ =  L
qenclosed  

 
The   length   involved   in   the   above   equation   is   really   the   height   of  
the   cylinder   that   we   are   using   for   the   Gaussian   surface   so   let's  
change   that   L   to   an   h   so   that   things   will   cancel   nicely   eventually.   
 

 λ =  h
qenclosed  

 
Isolating     gets   us   the   equation qenclosed   
 

  =   qenclosed  hλ  
 
Because   the   top   and   bottom   of   the   cylinder   do   not   contribute   to  
the   electric   field   strength   total   since   the   field   lines   are   parallel   to  



the   top   and   bottom,   the   areas   of   the   top   and   bottom   of   the  
cylinder   are   not   considered   when   computing   the   A   value   in  
Gauss   Law   in   this   case.   
 
Now   the   question   is   what   is   the   lateral   area   of   the   cylinder,   
 
Recall   that   a   cylinder   is   made   up   of   a   rectangle   of   height   h   and  
of   base   2πr,   therefore   the   lateral   area   of   a   cylinder   is   
 
LA   =   2πrh   
 
Plugging   that   in   for   A   and   plugging   the   other   equation   we   got  
for     yields   the   following   equation   for   Gauss   Law: qenclosed   
 
 

 E2πrh Φelectric =  =  ε0

λh  

 
Isolating   E   yields:   
 
E   =   λ

2πrε0
 

 
To   make   sure   that   this   makes   intuitive   sense,   let’s   evaluate   
 
lim
r→∞

λ
2πrε0

 

 



As   r   gets   bigger   and   bigger,   the   expression   approaches   the   value  
of   0,   therefore,   
 

=   0 lim
r→∞

λ
2πrε0

  

 
This   should   make   some   intuitive   sense,   because   as   you   get  
farther   and   farther   away   from   the   charged   rod   the   strength   of   the  
electric   field    should    get   weaker   and   weaker.   It’s   the   same   reason  
why   a   charged   balloon   doesn’t   make   your   hair   stick   up   if   it’s   all  
the   way   on   the   other   side   of   the   room.   Weak   electric   field   =   hair  
doesn’t   stick   up   because   the   electrostatic   force   is   weak,   recall  

.  qEF electrostatic =    
 
Example)   
 
Suppose   we   have   a   solid   sphere   of   a   conducting   material   of  
charge   Q   and   radius   R,   find   E(r).   
 

 



 
First   thing   we   need   to   do   is   understand   that   in   a   conducting  
object,   on   the   inside   the   electric   field   is   zero.   This   is   because  
inside   the   conducting   object,   there   is   no   excess   charge,   all  
excess   charge   is   on   the   outermost   skin.   If   there   is   no   charge   then  
there   is   no   electric   field,   as   charges   are   the   source   of   all   electric  
fields.   
 
The   second   thing   that   we   need   to   recognize   is   that   we   need   to  
make   a   Gaussian   Surface!   
 
Because   this   is   a   sphere,   in   order   for   the   electric   field   lines   to   hit  
our   imaginary   Gaussian   Surface   perfectly   perpendicularly,   we  
must   make   a   bigger   Gaussian   sphere   that   encloses   the   charged  
sphere   in   question.   
 
Now   we   must   find   out   what   the   area   of   the   sphere   is,   luckily   the  
area   of   a   sphere   is   a   rather   easy   formula   to   memorize,   its   4πr 2 ,   if  
you   know   the   formula   for   volume   of   a   sphere,   you   can   take   its  
derivative   and   then   you’ll   get   the   area   formula.   
 
Gauss   Law   now   looks   like:  
 

 E4πr  Φelectric =  2 =  Q
ε0

 

 



Isolating   E   we   get   
 
E  =  Q

4πr ε2
0

 

Recall,    k =  1
4πε0

 

Therefore,   E   =   k   Q
r2  

 
  



How   to   calculate   the   E   field   of   a   solid   object:   

 
 
When   trying   to   calculate   the   electric   field   strength   of   a   solid  
object,   we   have   two   options:   
 

1. Gauss   Law   (can   only   be   used   in   highly   symmetric  
scenarios)   

2. Integrate   Electric   field   equation   derived   from   Coulomb’s  
Law   (hard   way,   but   always   gets   you   the   answer)   

 
Since   we   already   did   Gauss   Law   in   the   last   section,   let’s   do   the  
harder   way   now.   
 
Recall   Coulomb’s   Law,      
 

 k q E F electrostatic =  r2
q q1 2 =  2  

 
Therefore,   
 

 k E =  r2
q1  

 
In   a   solid   object,   we   can’t   just   treat   the   whole   object   as   a   point  
charge   because   a   solid   object   is   comprised   of   an   infinite   amount  



of   point   charges   that   need   to   be   added   up.   When   we   want   to   add  
up   infinitely   small   parts,   what   does   that   remind   you   of?   That’s  
right!   Integrals   :).   
 
Let   us   take   a   sample   point   charge   on   a   charged   rod,   this   sample  
point   charge   has   a   charge   of   magnitude   dq.   This   small   point  
charge   has   its   own   contribution   to   the   total   E,   let   us   call   it   dE.  
Let’s   plug   these   values   into   the   aforementioned   equation.   
 

E k d =  r2
dq  

 
In   order   for   us   to   add   up   all   these   small   contributions   to   the   total  
E,   we   must   integrate   both   sides.   
 
Now   the   equation   becomes:   
 

E k ∫
E

0
d =  ∫

Qtotal

0
r2
dq  

 
Let   us   take   a   point   of   interest,   P   that   is   located   coaxial   to   the   rod  
and   is   located   a   distance   d   away   from   the   right   end   of   the   rod.  
Find   the   electric   field   strength   at   point   P.   The   length   of   the   rod   is  
L   and   the   rod   has   a   uniform   linear   charge   density   λ.   See   figure  
below   to   visualize   it.   
 



 
 
There   is   a   mismatch   in   variables    on   the   right   hand   side   of   the  
equation,   this   is   because    each   dq   element   is   positioned   at   a  
different   distance   from   the   point   of   interest,    hence    the   variable   is  
r.    
 
Because   we   have    a   mismatch   in   variables    on   the   right   hand   side  
of   the   equation,   we   need   to   find   a   way   to   transform   the    dq  
incremental    into   a    dr .   Lucky   for   us,   and   perhaps   not  
surprisingly,   they   gave   us   the   linear   charge   density   of   the   rod.   
Recall,   λ   =   r

q  
 
Therefore,   since   they   told   us   that   it   was   a   uniform   density,   that  
ratio   maintains   itself   even   at   very   small   scales.   To   denote   small  
incrementals,   we   will   use   dq   to   describe   an   infinitely   small  
charge   and   dr   to   describe   an   infinitely   small   distance.   
 

 λ =  dr
dq  

 



Isolating   dq   so   that   we   can   plug   into   the   right   hand   side   of   the  
integral   yields   the   equation:   
 

 dr qλ = d  
 
Now   the   integral   becomes:   
 

E k ∫
Etotal

0
d =  ∫

L+d

d
r2

λ dr  

 
Notice   that   the   limits   of   the   right   hand   side   changed,   this   is  
because   now   we   are   integrating   with   respect   to   distance,   rather  
than   charge   like   we   were   originally.   The   lower   limit   is   d,  
because   the   shortest   distance   that   the   dq   element   could   be   to   the  
point   of   interest   is   d,   and   the   upper   limit   is   L+d   because   the  
largest   distance   that   the   dq   element   can   be   from   the   point   of  
interest   is   L+d.   
 
Because   the   linear   charge   density   is   a   constant,   we   can   take   it  
out   of   the   integrand.   
 
The   integral   now   becomes:   
 
 



E kλ  dr∫
Etotal

0
d =  ∫

L+d

d

1
r2  

 
We   can   simplify   the   left   hand   side   right   now,   it   just   becomes  
Etotal  
 
The   equation   is   now:   
 

 kλ  drEtotal =  ∫
L+d

d

1
r2  

Now,   because   there   is   no   mismatch   in   variables   on   the   right  
hand   side   of   the   equation,   we   can   proceed   to   do   the   integral   as  
usual.   
 

kλ [ ∣Etotal =  r
1−

d
L+d  

 
 kλ ( ) Etotal =  1−

L+d + d
1  

 
 kλ (  )Etotal =  d

1 −  1
L+d  

  
Now   I   think   you   can   see   why   we   try   to   avoid   this   method   as  
much   as   possible   and   do   Gauss   Law   when   we   can…   
 
 
 



Unit   10:   Circuits   

 

IRV =   
 IVP =   
 I R P =  2  
 P = R

V 2
 

 C =  q
V  

  ε =  − L dt
dI  



 LIU inductor =  2
1 2  

 CVU capacitor =  2
1 2  

 QVU capacitor = 2
1  

U capacitor =  Q2

2C  
 R  R R ... R  Rtotal series =  1 +  2 +  3 +  n 1− +  Rn  

    ...  1
Rtotal parallel

=  1
R1

+  1
R2

+  1
R3

+  1
Rn 1−

+  1
Rn

 

  I  I ...  IIcircuit series = I1 =  2 =  3 = In 1− =  n  
 I  I  I  ... I IIcircuit parallel =  1 +  2 +  3 +  n 1 − +  n   
 V  V  V  ... V  VV circuit series =  1 +  2 +  3 +  n 1− +  n  

 V  V  V  ... V  VV circuit parallel =  1 =  2 =  3 =  n 1− =  n  
 II in =  out  

 VV battery =  loop  
 Q  Q  Q  ... Q  QQtotal series =  1 =  2 =  3 =  n 1− =  n  

 Q  Q  Q  ... Q  QQtotal parallel =  1 +  2 +  3 +  n 1− +  n  
     ...  1

C total series
=  1

C1
+  1

C2
+  1

C3
+  1

Cn 1−
+  1

Cn
 

 C C  C  ... C  CC total parallel =  1 +  2 +  3 +  n 1− +  n  

 I =  dt
dq  

 
  



What   is   a   parallel   and   series   circuit?   
 

Let’s   start   with   what   a   series   circuit   is   because   that’s   the   easiest,  
basically   you   can   identify   a   series   circuit   by   the   fact   that   there  
are   no   branches   and   you   can   take   your   finger   around   the   entire  
circuit   without   diverging.   This   is   a   series   circuit,   the   zigzags  
denote   resistors   and   the   darker   lines   denote   a   battery   or   cell.  

 
A   parallel   circuit,   in   contrast   has   branches   and   there   are   multiple  
paths   for   your   finger   to   take.   The   below   circuit   is   an   example   of  
a   parallel   circuit.   
 
 
 
 
 
 



Sometimes   you   will   be   faced   with   a   circuit   that   is   a   combination  
of   both   a   parallel   circuit   and   a   series   circuit,   good   news   for   us,  
those   types   of   circuits   can   always   be   rewritten   in   terms   of   an  
equivalent   series   or   parallel   circuit.   Then,   knowing   that   current  
is   constant   in   a   series   circuit   or   knowing   that   voltage   in   a  
parallel   circuit   is   constant   you   can   solve   for   any   unknown.  
Sometimes   you   will   have   to   boil   down   the   entire   circuit   to   a  
single   resistor   so   that   you   can   solve   for   the   current   knowing   that  
the   voltage   across   the   single   resistor   is   equivalent   to   the   battery’s  
voltage.   

 

  



Capacitors:   

 
Capacitors   are   instruments   that   store   charge   on   them.   When   the  
circuit   is   turned   on,   the   capacitor   acts   as   a   short   (just   a   piece   of  
wire),   and   eventually   it   will   charge   up   to   maximum   charge.   In  
Capacitor   circuits   with   resistors,   the   same   rules   apply   as   circuits  
with   just   resistors,   simplify   the   circuit   finding   equivalent  
resistors   and   equivalent   capacitors   and   then   solve   for   unknowns.   
 
Sometimes   we   will   be   asked   to   find   the   equation   that   models   the  
charge   as   a   function   of   time   for   a   capacitor   in   a   circuit.   
 
In   order   for   us   to   do   this,   we   must   utilize   Kirchhoff's   loop   rule,  
which   states   that   the   sum   of   the   voltage   drops   in   a   loop   equals   0.  
What   is   a   loop?   Well   a   loop   is   a   single   path   of   wire,   it   is   because  
of   Kirchhoff’s   loop   rule   that   parallel   resistors   have   equivalent  
voltages,   each   path   is   its   own   loop   that   connects   the   resistor   to  
the   battery,   and   because   all   the   energy   needs   to   be   used   the  
voltage   across   both   resistors   is   the   same   and   is   the   same   in   the  
battery   assuming   no   other   resistors   are   present   in   the   circuit.  
Kirchhoff’s   loop   rule   is   an   extension   of    conservation   of   energy ,  
all   energy   gained   by   the   particles   as   they   move   through   the  
battery   needs   to   be   used   up   by   them   as   they   go   across   the  
resistor,   otherwise    you   would   end   with   more   energy   than   you  
started   with ,   violating   the    conservation   of   energy   principle .   



 
Let   us   take   a   simple   RC   circuit   (a   circuit   that   contains   both   a  
resistor   and   a   capacitor)   such   as   the   one   seen   below:   

 
 
 
 
 
 
 
 
 
 
 
 
 

According   to   Kirchoff’s   loop   rule:   
 

 V∑
n

i=1
V i =  battery   

 
Applying   that   to   the   above   circuit:   
 

 C =  q
V  

Therefore,   
 



V capacitor =  q
C  

 
 V  VV s =  resistor +  capacitor  

 
 IR V s =  +  q

C  
 
Because   the   current   going   through   the   circuit   is   not   constant   and  
varies   as   a   function   of   time,   we   need   to   break   down   the   current  
into   its   differential   components.   
 
Recall   that    I =  dt

dq  
 
Now   the   equation   becomes   
 

  R V s = dt
dq +  q

C  
 
This   is   a   differential   equation,   thus   to   solve   it   we   need   to   do  
what   is   called    separation   of   variables ,   basically   all   we’re   going  
to   do   is   take   all   the   things   with   a   q   on   one   side   and   then   put  
everything   else   on   the   other   side.   In   the   end   we   should   have   the  
q   and   the   dq   on   one   side   and   on   the   other   side   we   should   have   dt  
and   other   variables   that   are   NOT   q.  
 
Easiest   way   for   us   to   do   this   effectively   is   to   isolate     and   then dt

dq  
put   the   dq   where   it   needs   to   be.   



 
  R V s = dt

dq +  q
C  

 
Let’s   do   that   now:   
 

   RV s −  q
C =  dt

dq  
 
Now   we   will   divide   out   the   dq:   
 
V  ) ( ) ( s − q

C
1

dq =  R
dt  

 
We   will   now   take   the   reciprocal   of   both   sides:   
 

 dq 1
V  s − q

C
=  R

dt  

 
We   will   now   integrate   both   sides:   
 

 dq ∫
Q

0

1
V  s − q

C
=  ∫

t

0
R
dt  

 
Notice   how   the   upper   and   lower   limits   correspond   to   one  
another   physically.    At   time   t=0   the   charge   in   the   capacitor   will  
be   0   C,   and   at   an   arbitrary   time   t,   the   charge   in   the   capacitor   will  
be   some   arbitrary   charge   Q.   



 
Now   we   will   have   do   a   u-substitution   in   the   integral,   
 
Let   u   =    V s − q

C  
 

 0 du
dq =  −  1

C  

 
Isolating   du   yields:   
 

u d =  C
dq−  

 
Now   we   will   isolate   dq   so   that   we   can   directly   plug   in.   
 

 du dq− C =   
 

 dq ∫
Q

0

1
V  s − q

C
=  ∫

t

0
R
dt  

 
Now   the   above   integral   becomes:   
 

  du − C ∫
 

 
u
1 =  ∫

t

0
R
dt  

Notice   two   things:   firstly,   we   leave   out   the   limits   of   integration  
when   we   plug   in   u   and   du,   this   is   because   we   are   now   no   longer  
integrating   with   respect   to   q.   Secondly,   notice   that   if   we   plug   in  



for   du   and   u   for   their   expressions   in   terms   of   q   and   C,   we   would  
see   that   the   integral   is   the   exact   same!   
 
Now   we   will   evaluate   the   integral   for   both   sides:   
 

 [ln  − C V   ∣ 
∣ s −  q

C
 ∣ 
∣ ]0

q =  t
R  

 
Let’s   bring   the   -C   to   the   other   side   now   for   simplification   sake:   
 
ln  [ V   ∣ 
∣ s −  q

C
 ∣ 
∣ ]0

q =  t−
RC  

 
Now   we   will   evaluate   the   definite   integral   on   the   left   hand   side:   
 
n lnl V    ∣ 
∣ s − q

C
 ∣ 
∣  −  V∣ s∣  =  t−

RC  
 
Now   we   will   combine   the   ln   expressions   on   the   left   hand   side:   
 

nl
 ∣ 
∣ 
∣ V s

V  s − q
C

 ∣ 
∣ 
∣ 
 =  t−

RC  

 
Now   we   will   exponentiate   both   sides   to   the   power   e   in   order   to  
cancel   the   ln:   

 eV s

V  s − q
C =  t−

RC  
 



Now   we   will   try   to   isolate   q,   because   that   will   give   us   the  
function   q(t):   
 

   eV s −  q
C = V s

t−
RC  

 
 V  e  V s −  s

t−
RC =  q

C  
 
Now   multiply   by   C:   
 

C (1 e )  q(t) V s −  t−
RC =   

 
Recall,   
 

 C =  q
V  

 
Therefore:   
 

V  qC =   
 
The   maximum   voltage   that   the   capacitor   can   have   across   it   is  

  therefore: V s   
 

V  qC s =  max  
 
The   function   then   becomes:   



 
  (1 e ) qmax = qmax −  

t−
RC  

 
Now   to   make   sure   that   this   is   the   right   solution   and   that   it   makes  
physical   sense,   let’s   evaluate     and q  (1 e )lim

t→0 
 max −  

t−
RC  

q  (1 e )lim
t→∞

 max −  
t−

RC  

 
 
Let’s   start   with    q  (1 e )lim

t→0 
 max −  

t−
RC  

 
Plugging   in   0   for   t   gives   us   this   expression:   
 

q  (1 1)lim
t→0 

 max −   

 
q  (0)lim

t→0 
 max  

 
Therefore:  

q  (1 e ) 0lim
t→0 

 max −  
t−

RC =   

 
 
Let’s   now   do   q  (1 e )lim

t→∞
 max −  

t−
RC  



As   t   gets   larger   and   large,     gets   closer   and   closer   to   0   (it’ll   be e t−
RC  

1/very   large   #   which   is   basically   0),   therefore   the   limit   becomes:   
 

  =   =     =   q  (1 e )lim
t→∞

 max −  
t−

RC q  (1 0)lim
t→∞

 max −  q  (1)lim
t→∞

 max qmax  

 
This   should   make   sense,   because   as   soon   as   you   turn   on   the  
switch   the   charge   of   the   capacitor   should   be   0   C,   but   over   time  
as   you   wait   longer   and   longer   (ie   waiting   an   entire   day),   the  
capacitor   should   be   fully   charged.   
 
Now   that   we   have   the   charge   as   a   function   of   time,   we   can   find  
the   current   as   a   function   of   time   as   well,   as   I   =   so   all   we   gotta dt

dq  
do   is   differentiate   our   equation   for   q(t).   
 
Then   because   we   know   V   =     all   we   need   to   do   to   get   V(t)   is q

C  
just   divide   q(t)   by   C,   because   C   does   not   change   as   a   function   of  
time.   
 
 
  



Inductors:   

Inductors   are   metal   coils   that   produce   a   magnetic   field   that  
opposes   change   in   current.   A   solenoid   can   be   used   as   an  
inductor.   When   you   turn   on   the   circuit,   inductors   oppose   all  
current   and   over   time   they   act   as   a   short   (just   a   piece   of   wire).  
Basically   inductors   are   the   opposite   of   capacitors,   because   if   you  
recall,   capacitors   act   as   shorts   when   you   turn   on   the   circuit   and  
then   over   time   they   act   as   an   open   switch   and   oppose  
everything.   
 
We   can   compare   how   inductors   act   with   how   forces   act:   
 
Recall   Newton’s   second   law:   
 

 m F net =  dt
dv  

 
  εinductor =  − L dt

dI  
 
In   circuits   and   inductors,   the   equivalent   of   mass   is   inductance  
(L),   in   the   same   way   that   mass   is   physical/mechanical  
sluggishness,   inductance   is   electrical   sluggishness.   Higher  
inductance   =   harder   to   change   the   current.   Higher   mass   =   harder  
to   change   velocity.   
 



Recall   mechanical   kinetic   energy:   
 

  mvK =  2
1 2  

 
 LIU inductor =  2

1 2  
 
In   summary,   mass   is   analogous   to   inductance   and   velocity   is  
analogous   to   current.   
 
Sometimes   they   will   ask   us   to   find   the   current   through   the  
inductor   as   a   function   of   time.   
 
In   order   to   do   this,   we   must   apply   Kirchhoff's   loop   rule   again:   
 
Let’s   assume   a   simple   RL   circuit   as   follows:   

 
 
 
 
 
 
 
 
 

 V  VV battery =  R +  L  



 IR L V battery =  +  dt
di  

 
You   may   be   asking   why   its   +   L     and   not   -,   it   is   because   as   the dt

di  
electrons   go   across   the   inductor,   they   must   use   energy   to  
counteract   the   inductor’s   push   in   the   opposite   direction.   
 
This   is   another   differential   equation,   we   must    separate  
variables:  
 

 IR L V battery −  =  dt
di  

 
  Divide   di   on   both   sides:   
 
V  IR) ( ) L ( ) ( battery −  1

di =  1
dt  

 
Take   the   reciprocal   of   both   sides:  
 

dI  1
V   IRbattery − =  L

dt  

 
Now   integrate   both   sides:   
 

dI  ∫
I

0

1
V   IRbattery − =  ∫

t

0
L
dt  

 



Now   we   need   to   do   a   u-substitution:   
 
Let   u   =    IRV battery −   
 

 0 dI
du =  − R  

 
u  dI  d =  − R  

 
Now   isolate   dI   
 

 dIR
du− =   

 
Substitute   into   integral   expression:   
 

dI  ∫
I

0

1
V   IRbattery − =  ∫

t

0
L
dt  

 
Now   becomes   
 

 du − 1
R ∫

 

 
u
1 =  t

L  

Now   multiply   by   -R:   
 

 du  ∫
 

 
u
1 =  L

Rt−  



Evaluate   integral   on   left   hand   side:   
 
ln  [ V  IR ∣ 
∣ battery −   ∣ 

∣ ]0
I =  L

Rt−  
 
n ln  l V  IR ∣ 
∣ battery −   ∣ 

∣  −  V ∣ ∣ battery
 ∣ 
∣  =  L

Rt−  
 
Combine   ln   expressions:   
 

n  l
 ∣ 
∣ 
∣ V battery

V   IRbattery −  ∣ 
∣ 
∣ 
 =  L

Rt−  

 
Exponentiate   to   cancel   the   ln:   
 

 eV battery

V   IRbattery − =   L
Rt−  

 
Isolate   I:   
 

IR V  eV battery −  =  battery
 L

Rt−  
 

 (1 ) IRV battery − e L
Rt− =   

 

 (1 ) I(t) R
V battery − e L

Rt− =   
 
Recall,   V   =   IR,   therefore   I   =   R

V  



 

Therefore   since     is   the   maximum   voltage,     must V battery R
V battery  

be   maximum   current.   
 

(t) I  (1 ) I =  max − e L
Rt−  

 
This   is   directly   in   line   with   what   we   would   expect   as   well,  
because   as   we   said   in   the   first   section   on   inductors,   they   oppose  
all   current   when   you   switch   it   on   and   then   over   time   they   act   as  
a   short.   The   limits   of   the   function   as   t   approaches   0   and   infinity  
coincide   with   this   fact.   
 
Because   the   inductor   and   the   resistor   are   in   series,   they   have   the  
same   current   flowing   through   them,   therefore,   we   can   get   the  
voltage   across   the   resistor   as   a   function   of   time   as   well,   by  
relating   it   through   Ohm’s   law,   or   V   =   IR.   
 

 I(t) RV resistor =   
 

 V  (1 )V resistor =  battery − e L
Rt−  

 
This   should   make   intuitive   sense   as   well,   because   just   when   the  
circuit   is   turned   on,   there   is   no   current   going   through   the  
resistor,   thus   there   is   no   voltage.   Then   over   time   the   inductor  
becomes   basically   a   piece   of   wire   in   the   circuit,   making   the  



voltage   across   the   resistor   be   the   same   as   the   voltage   across   the  
battery.   
 

Kirchhoff’s   Law   circuits:   
 

Sometimes   you   will   be   confronted   with   a   circuit   with   two  
voltage   sources   (either   batteries   or   an   electrochemical   cell,   etc.)  
in   this   scenario   you   need   to   make   use   of   two   laws   and   use   them  
to   set   up   a   system   of   equations   in   order   to   solve   for   any  
unknown.   Be   sure   to   pick   a   direction   that   you   consider   positive  
and   negative   when   navigating   the   circuit   ie   clockwise   or  
counterclockwise.   If   you’re   wrong   then   it   will   be  
inconsequential.   
 
First   rule:   
 
Kirchhoff's   junction   rule   aka   the   common   sense   rule  
 

 ∑
 

 
I into junction =  ∑

 

 
Iout of  junction  

 
This   is   based   off   of    the   conservation   of   charge    principle,   there  
has   to   be   the   same   amount   of   charge   leaving   the   junction   as  
there   is   entering.   A   junction   is   where   3   or   more   wires   converge,  



basically   a   fork   in   the   path.   A   and   b   are   junctions   in   the   below  
circuit.   

 
  
 
 
 
 
 
 

The   second   law   that   you   need   to   be   familiar   with   is   what   is  
known   as   Kirchhoff’s   loop   rule:   
 

 0∑
 

 
V loop =   

 
In   order   to   use   this   rule   you   need   to   identify   the   loop   you   are  
going   around   and   you   need   to   identify   if   the   particles   going  
through   the   resistor   or   battery   will   gain   or   lose   energy.   If   the  
particle   goes   from   the   negative   to   positive   terminal   then   it   gains  
energy   which   would   mean   that   you   would   subtract   that  
contribution,   and   if   the   particle   goes   from   positive   to   negative  
then   it   loses   energy   and   obviously   if   you   go   across   a   resistor  
then   you   lose   energy.   You’re   probably   asking   why   you   would  
subtract   if   you’re   gaining   energy,   it's   because   you’re   adding   up  



the    voltage   drops ,   and   so   you’re   not   dropping   in   voltage   if  
you’re   gaining   energy.   In   essence   it’s   a   “negative”   voltage   drop.  
 
Using   these   two   rules   you   can   set   up   a   system   of   equations   to  
solve   for   current,   voltage,   resistance,   etc   depending   on   what   they  
give   you   as   givens.   The   most   important   thing   is   that   these   two  
conditions   cannot   be   broken,   otherwise   charge   and   energy   are  
not   conserved   and   that’d   make   Kirchhoff,   Professor   Lewin,   and  
Mr.   Slesinski   angry.   
  



Unit   11:   Magnetic   forces   and   fields   

  
 qvB sinθF magnetic =   
 q (v )F magnetic =  × B  
 ILB sinθF magnetic =   
 L (I  )F magnetic =  × B  



 BAcosθΦmagnetic =   
 B AΦmagnetic =  •   

  dA 0Φmagnetic =  ∮
 

 
B •  =   

 ds μ I∮
 

 
B =  0 penetrating  

B d =  4πr2
μ I(dl × r) 0

︿

 
 
  



Drawing   magnetic   field   lines:   
 

Magnetic   fields   result   from   the   movement   of   charged   particles,  
any   time   there   is   a   moving   charge   there   is   also   a   magnetic   field  
produced.   There   are   other   ways   that   magnetic   fields   can   be  
produced   too,   such   as   the   lining   of   electron   domains,   which   are  
basically   big   chunks   of   electrons   that   are   spinning   around   their  
respective   atoms.   When   these   electron   domains   align   themselves  
they   cause   a   net   movement   of   charge   in   one   direction,   thus   a  
magnetic   field   is   produced.   
 
Important   things   to   know   about   magnetic   field   lines:  
 

1. They   flow   from   north   to   south   
2. They   form   complete   closed   loops   

 
The   second   one   is   of   profound   importance,   because   to   our  
knowledge   it   is   impossible   to   make   a   magnetic   monopole   (an  
object   with   only   a   north   pole,   or   only   a   south   pole),   thus   we   get  
the   Gauss   Law   of   Magnetism:   
 

  dA 0 Φmagnetic =  ∮
 

 
B •  =   

 



The   amount   of   flux   lines   going   into   any   closed   surface   around   a  
magnet   is   always   equal   to   the   amount   of   flux   lines   leaving   the  
closed   surface,   because   they   form   closed   loops.   
 
In   order   to   draw   magnetic   field   lines,   one   must   pretend   to   place  
an   imaginary   north   pole/compass   at   a   given   point   and   see   which  
way   it   would   orient   itself.   

 
  



The   Magnetic   Force:   
 

A   magnetic   force   is   the   force   that   a   charged   object   experiences  
when   exposed   to   an   external   magnetic   field.   The   magnetic   force  
is   expressed   as   the   cross   product   of   the   velocity   vector   and   the  
magnetic   field   (B)   vector.   However,   the   magnetic   field   is   also  
dependent   on   the   charge   of   the   object   in   question,   the   object  
must   be   charged   in   order   for   the   magnetic   field   to   have   any  
effect   on   the   object.   Because   it   is   expressed   as   a   cross   product   of  
the   velocity   and   magnetic   field   vector,   the   magnetic   force   is  
always   perpendicular   to   both   the   velocity   and   the   magnetic   field.  
This   is   important,   because   recall   that   W   =     this   means  xF •   
that   because   the   force   is   perpendicular   to   the   velocity   it   is   also  
perpendicular   to   the   displacement,   thus   the   magnetic   force  
DOES   NO   WORK!!   In   order   to   determine   the   direction   of   the  
magnetic   force,   we   need   to   use   the   right   hand   rule,   see   cross  
product   chapter   for   more   details.   
 
In   a   situation   with   two   wires   that   have   steady   currents   flowing  
through   them,   if   their   magnetic   fields   point   in   the   same  
direction,   they   will   attract,   and   if   their   magnetic   fields   point   in  
the   opposite   direction,   they   will   repel.   
  



Magnetic   Field   visualization   rules:   
 

There   are   a   couple   of   things   you   need   to   keep   in   mind   to   help  
visualize   the   magnetic   fields   of   objects   that   go   beyond   simply   a  
bar   magnet.   
 
For   a   current   carrying   wire,   the   magnetic   field   is   a   doughnut  
shape   around   the   wire,   and   the   direction   of   it   is   found   using   the  
following   technique:   
 
Pretend   you’re   grabbing   the   wire   itself,   with   your   thumb  
pointing   in   the   direction   of   the   current.   The   way   your   fingers   are  
curved   is   the   direction   of   the   magnetic   field   around   the   wire.   
 
 
 
For   solenoids,   the   magnetic   field   will   be   the   same   as   a   bar  
magnet’s,    however,   in   order   to   determine   direction   you   need   to  
use   the   following   technique:   
 
Pretend   you’re   grabbing   the   solenoid   and   align   your   fingernails  
with   the   direction   of   the   current   in   the   wire,   the   end   that   your  
thumb   is   pointing   is   the   north   pole   of   the   magnetic   field.   
  



Ampere’s   Law:  
 

Because   Gauss’   law   of   magnetism   is   not   useful   in   calculating  
the   magnetic   field,   physicists   needed   to   come   up   with   some  
other   way   that   would   allow   us   to   easily   calculate   the   magnetic  
field   given   known   variables.   Instead   of   a   closed   surface   integral  
that   we   used   in   Gauss’   Law,   Ampere’s   Law   makes   use   of   a  
closed   line   integral.   
 
Ampere’s   Law   is   formally   stated   as:   
 

 ds μ I∮
 

 
B =  0 penetrating  

 
In   order   to   use   Ampere’s   Law   we   must   remember   the   following:  
 
We   must    draw   out   the   scenario    and   make   sure   that   we   draw   our  
Amperian   surface   such   that   at   any   point   along   the   ring/  
two-dimensional   shape   the    magnetic   field   is   constant    (at   the  
same   distance   away    from   the   object   of   interest).   
 
Then   the   equation   will   function   the   same   as   Gauss’   Law   of  
electricity,   except   instead   of   surface   area,   we   will   use  
circumference/   length   (this   is   due   to   the   fact   that   we   are   working  



with   a    closed   line   integral    instead   of   a    closed   surface   integral  
and   thus   we   are   integrating   with   respect   to    distance,   not   area ).   
 
Example   1)   
 
Suppose   we   have   a   wire   carrying   a   steady   current   of   magnitude  
I,   find   the   function   B(r)   where   r   is   the   distance   away   from   the  
wire.   The   function   will   only   be   defined   for   points   outside   of   the  
wire   itself.   

 
Because   we   know   that   the   magnetic   field   around   a   current  
carrying   wire   is   shaped   like   a   doughnut   around   the   wire   itself,  
we   know   that   if   the   amperian   surface   is   made   such   that   each  
point   is   the   same   radial   distance   away   from   the   wire   the  
magnetic   field   would   be   constant.   This   is   why   we   must   draw   a  



figurative   loop   around   the   wire   and   that   will   be   our   Amperian  
loop   for   this   example.   
 
Start   out   by   writing   out   Ampere’s   law:  
 

 ds μ I  ∮
 

 
B =  0 penetrating  

 
Because   we   drew   the   amperian   loop   such   that   it   is   concentric  
with   the   current   carrying   wire,   the   current   that   is   penetrating   the  
Amperian   loop   is   of   magnitude   I,   the   same   as   the   current   in   the  
wire.   
 
Because   the   magnetic   field   is   constant   around   the   Amperian  
loop,   the   B   can   be   taken   out   of   the   integrand.   
 
The   equation   now   becomes:   
 

s μ IB ∮
 

 
d =  0 penetrating  

 
The   closed   integral   of   ds   is   the   circumference   of   the   circle,   now  
the   equation   becomes:   
 

 2πr μ I  B =  0 penetrating  



 
Isolating   B   yields   the   basic   function:   
 

(r) B = μ I0
2πr  

 
 
Example   2)   
 
Now   suppose   we   have   a   solenoid   of   length   L   with   N   turns.  
Calculate   the   magnetic   field   strength   inside   the   solenoid.   

In   order   for   us   to   calculate   the   magnetic   field   strength   of   the  
solenoid,   we   must   use   Ampere’s   law.   
 



First   step   whenever   we   do   an   Ampere’s   law   problem   is   to  
identify   what   our   Amperian   surface   will   be.   
 
Because   we   know   that   the   magnetic   field   around   a   solenoid   is  
the   same   as   that   of   a   bar   magnet,   we   know   that   the   distance  
away   from   the   center   of   the   solenoid   is   the   only   thing   that  
affects   magnetic   field   strength.   Moving   along   the   axis   of   the  
solenoid   makes   no   difference   in   magnetic   field   strength   because  
the   flux   per   unit   area   is   the   same   anywhere   along   the   axis   of   the  
solenoid.   
 
Because   of   this   we   are   going   to   make   a   fictitious   rectangle   such  
that   the   rectangle   extends   from   one   end   of   the   solenoid   to   the  
other   and   extends   outward.   
 
This   Amperian   surface   is   a   bit   more   complicated   than   the  
previous   one   because   we   need   to   split   up   the   closed   surface  
integral   into   separate   integrals   to   deal   with   each   side   of   the  
rectangle.   This   is   because   the   magnetic   field   along   each   part   of  
the   Amperian   surface   is   not   uniform,   and   thus   needs   to   be  
integrated   separately.   The   rectangle   will   have   sides,   a,   b,   c,   and  
d.   The   only   side   that   will   be   inside   the   solenoid   will   be   side   d.   
 
Start   out   by   writing   out   Ampere’s   law:   

 ds μ I∮
 

 
B =  0 penetrating  



To   break   this   closed   line   integral   up   we   need   to   do   the  
following:   
 

 ds  ds ds  ds  μ  I∫
 

 
Ba +  ∫

 

 
Bb +  ∫

 

 
Bc +  ∫

 

 
Bd =  0 penetrating  

 
Luckily   for   us,   this   boils   down   quite   nicely.   This   is   because  
anywhere   outside   the   solenoid   the   magnetic   field   is   so   weak   that  
is   does   not   contribute   enough   to   the   overall   magnetic   field   to   be  
calculated.   This   means   that   are   all   0   in , B , and B  Ba  b  c  
magnitude,   thus   all   of   those   integrals   cancel   out   because   0   times  
anything   is   0.   
 
The   equation   then   becomes:   
 

 ds μ  I∫
 

 
Bd =  0 penetrating  

 
The   side   d   extends   from   0   to   the   full   length   of   the   solenoid,   L  
and   the   magnetic   field   is   constant   along   the   axis   of   the   solenoid,  
thus   the   equation   becomes:   
 

 s  I  Bd ∫
L

0
d = μ0 penetrating  

 



Now   that   we   have   a   fairly   straight   forward   integral,   we   now  
need   to   figure   out   an   expression   of   the   magnitude   of   the   current  
that   is   penetrating   the   Amperian   surface.   Because   it   is   a  
solenoid,   there   is   a   current   penetrating   the   surface   at   every   point  
there   is   a   loop   or   turn   in   the   solenoid,   therefore   the   total   current  
penetration   is   dependent   on   the   number   of   loops   in   the   wire.   
 

 N  I  I total =   
 
Now   the   equation   becomes:   
 

L μ  IBd =  0 penetrating  
 
Isolating   magnetic   field   strength   yields   the   following:   
 

 Bd =  L
μ  N  I0  

 
Loop   density   n   =   L

N  
 
Therefore:  
 

 μ  n IBd =  0  
Example   3)   
 



A   toroid   is   a   solenoid,   but   in   the   shape   of   a   circle.   Find   the  
magnetic   field   strength   inside   the   toroid   if   the   current   flowing  
through   the   wires   is   of   magnitude   I   and   the   toroid   has   N   number  
of   loops.   
 
Because   a   toroid   is   basically   a   circular   solenoid,   we   know   that  
inside   the   toroid   the   magnetic   field   is   more   or   less   uniform,  
because   of   this,   we   know   that   we   can   make   an   amperian   loop  
around   the   circumference   of   the   toroid   to   calculate   the   magnetic  
field   strength.   

 
 
 
 
  
 

  



The   figure   shown   above   models   exactly   what   we’re   going   to   do  
to   calculate   the   magnetic   field   of   the   toroid.   
 
Start   by   writing   Ampere’s   Law:   
 

 ds μ I∮
 

 
B =  0 penetrating  

Because   everywhere   along   the   amperian   loop   we   drew   the   B   is  
constant   we   don’t   have   to   break   the   closed   line   integral   up   into  
separate   integrals   like   we   had   to   do   in   the   last   example.   We   can  
take   B   out   of   the   integrand   yielding   the   following   equation:   
 

ds μ IB ∮
 

 
 =  0 penetrating  

The   surface   we   chose   is   circular   in   nature,   and   thus   the   integral  
of   ds   is   the   circumference   of   the   circle   yielding:   
 

 2πr μ IB =  0 penetrating  
 
I   penetrating   is   the   number   of   loops   times   the   current:   
 

 2πr μ  N  I  B =  0  
 
Solving   for   B   yields   the   following   equation:   
 



 B =  2πr
μ NI0  

 
 
 
 

  



Magnetic   Flux:  
 

Magnetic   flux   is   the   exact   same   as   electric   flux,   but   with  
magnetic   field   lines   instead   of   electric   field   lines.   Please   refer   to  
electric   flux   chapter   for   more   details.   
  



Biot-Savart’s   Law:  
 

In   the   same   way   that   in   electricity   we   sometimes   had   to   integrate  
Coulomb's   law   in   order   to   get   E,   in   magnetism   where   situations  
are   not   symmetric   enough   for   you   to   use   Ampere’s   Law,  
Biot-Savart   Law   is   used.   If   you   have   the   option   of   using  
Ampere’s   Law,   PLEASE   USE   AMPERE’S   LAW,   DO   NOT  
USE   THIS   LAW   UNLESS   YOU   ABSOLUTELY   100%   HAVE  
TO!!   
 
Biot   and   Savart   wanted   to   make   an   equation   that   related   an  
infinitely   small   piece   of   the   magnetic   field   to   the   current,   the  
permeability   of   free   space,   and   distance.   What   they   found   was  
that   they   had   to   break   up   the   current   into   what   are   referred   to   as  
“current   elements”   which   are   basically   little   tiny   pieces   of   the  
wire   that   carry   the   current.   
 
Biot-Savart   Law   is   formerly   written   as:   
 

B d =  4πr2
μ  I  dl × r0

︿

 
 

  is   the   permeability   of   free   space, μ0   
I   is   the   current   in   the   wire   

  is   the   infinitely   small   piece   of   the   wire ld  



  is   the   unit   vector   that   points   from   the   current   to   the   magnetic r︿  
field   point  

  is   distance r   
 
 
 
In   order   to   show   that   this   law   isn’t   bogus   and   does   actually   work  
we’re   going   to   do   an   example   that   we   did   using   Ampere’s   Law  
to   prove   that   1,   this   law   does   in   fact   work   and   2,   that   Ampere’s  
Law   is   much   easier.   
 
Let’s   start   out   by   having   a   current   carrying   wire   carrying   current  
I,   find   B(r)!   
 
Let’s   start   out   by   looking   at   the   point   of   interest,   which   is   at   an  
arbitrary   distance   r   away   from   the   current   carrying   wire.   
 
Let’s   now   write   down   Biot-Savart’s   Law:   
 
 

B d =  4πr2
μ  I  dl × r0

︿

 
 
First   thing   we   want   to   do   is   get   rid   of   that   pretty   disgusting  
looking   cross   product.   We   can   do   this   by   replacing   the   cross  
product   with   sinθ.   



 
B d =  4πr2

μ  I  dl sinθ0  
 
Well   the   sin   of   theta   is   rather   difficult   to   look   at,   because   the  
angle   changes.   The   perpendicular   distance   away   from   the   wire  
will   be   denoted   as   R,   while   r   refers   to   the   distance   the   point   of  
interest   is   away   from   the     incremental.   The   distance   across ld  
the   wire   will   be   denoted   as   l  
 

inθ s =  r
R  

 
r   =   R

sinθ  
 
Because   the   angle   between   the   d   incremental   and   the   point   of l  
interest   changes,   we   need   to   integrate   over   theta.   
 
anθ t =  l

R−  
 
 cotθl =  − R  

 
Differentiate   in   order   to   get   relation   between   d   and   d yields l θ   
 

 R csc θdl
dθ =  2  

 
Therefore,   



 
l R csc θ dθd =  2  

 
Recall   that   scθ c =  1

sinθ  
 
Therefore:   
 

l dθd =  R
sin θ2  

 
We   want   to   write   it   in   terms   of   sin   so   that   things   can   cancel   out  
when   we   plug   back   into   the   integrand.   
 
The   equation   now   becomes:   
 

B dθd =  μ  I  R  0

4π( )sinθR2

sin θ2
 

B dθd =  4π R
μ  I  sinθ0  

 
Now   we   will   integrate   both   sides:   
 

B dθ∫
B 2total/

0
d =  ∫

π 2/

0
4π R

μ  I  sinθ0  

 



Notice   that   the   limits   of   the   left   side   is   ½   the   total   B,   this   is  
because   we   are   only   looking   at   one   half   of   the   rod   with   the  
limits   of   integration   we   have   on   the   right   side.   
 

 inθ dθ2
Btotal =  μ I  0

4πR ∫
π 2/

0
s  

 
  [ osθ]Btotal =  μ I0

2πR − c 0
π 2/  

 
  ( os( ) cos(0) ) Btotal = μ I0

2πR − c 2
π +   

 
 (0 )Btotal =  μ I0

2πR + 1  
 

 Btotal =  μ I0
2πR  

 
Now   you   understand   why   we   try   to   avoid   this   law   as   much   as  
humanly   possible.   Ampere’s   law   is   much   easier.   
 
  



Unit   12:   Electromagnetic   Induction  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  



 Nεinduced =  dt
dΦ− magnetic  

 AΦmagnetic =  ∫
 

 
B • d  

 εinduced =  dt

 d(  • dA)− ∫
 

 
B

 
 

  dlε =  ∮
 

 
E  

 
  



The   basic   interactions:  
 

Magnetic   forces   act   on   wires,   in   addition   to   them   producing  
their   own   magnetic   field,   when   wires   are   exposed   to   an   external  
magnetic   field   produced   by   bar   magnets,   they   experience   a  
magnetic   force.   
 
See   the   below   figure:   

 
 
 
  
 
 
 
 
 
 
 
 
 
 

Recall   that   magnetic   field   lines   flow   from   N   to   S,   therefore   there  
is   a   net   magnetic   field   to   the   right   in   the   above   diagram.   
 
Recall   that   current   is   simply   a   flow   of   charge,   charged   particles  
that   have   a   velocity.   Remember   that   the   magnetic   force   is  
expressed   as   a   cross   product   of   the   velocity   vector   and   the  



magnetic   field   vector.   Therefore   the   force   vector   is   directed   into  
the   page,   thus   the   wire   accelerates   into   the   page.   
 
Now   let’s   assume   that   the   wire   does   not   have   any   current  
flowing   in   it,   would   there   be   a   magnetic   force   being   exerted   on  
the   wire?   Well    the   wire   has   latent   charge ,   due   to   its   electrons,  
but   because    the   wire   does   not   have   a   current   flowing ,   the  
electrons   are   not   moving.   Therefore,    we   need   to   move   the   wire    in  
order   to   cause   the   electrons   to   move   with   respect   to   the   magnetic  
field   produced   by   the   bar   magnets    in   order   to   produce   a  
magnetic   force .   Now   the   charges   have   a   velocity,   thus   if   we  
moved   the   wire   into   the   page,   the   magnetic   force   would   be  
directed   upward.   This   magnetic   force   will   now   affect   the  
charges   in   the   wire,    inducing   a   current   in   the   wire   in   the  
direction   of   the   magnetic   force.   
  



Lens’   Law:  
 

Because   of   the   observation   we   discussed   above   about   the  
moving   wire   in   the   presence   of   a   magnetic   field,   scientists  
wanted   to   see   if   moving   the   magnetic   field   would   cause   an  
induced   current   in   a   wire.   It   was   found   that   moving   a   magnet  
away   from   a   coil   of   wire   caused   a   current   to   be   induced   in   the  
wire   such   that   the   magnetic   field   produced   in   the   wire   would   be  
such   that   it   would   attract   the   moving   magnet.   The   magnetic   field  
was   experimentally   determined   to   always   oppose   the   motion   of  
the   original   magnet.   This   is   what   Lens’   Law   is   at   its   core.   
 

Example)   see   above   figure.   



 
Because   the   magnet   is   being   plunged   into   the   coil   of   wire,   the  
current   induced   in   the   coil   of   wire   would   cause   a   north   pole   to  
form   in   the   left   side   of   the   coil   so   as   to   oppose   the   motion   of   the  
bar   magnet   being   plunged   into   the   coil   of   wire.   The   current  
direction   can   be   found   by   using   the   solenoid   current   right   hand  
rule   discussed   in   previous   chapters.   The   thumb   points   in   the  
direction   of   the   magnetic   north   pole   and   the   finger   tips   curl   in  
the   direction   of   the   current.   
  



Faraday’s   Law:   

 
 
Michael   Faraday   wanted   to   see   if   a   changing   magnetic   field  
could   induce   a   voltage   in   a   conductor.   His   work   involved  
analyzing   the   effect   of   the   rate   of   magnetic   flux   busting   on  
induced   voltage.   What   he   found   was   that   the   faster   the   magnetic  
flux   is   busted,   the   higher   voltage   that   is   induced   in   the  
conductive   material.   He   also   determined   that   the   number   of  
loops   of   the   conductive   material   also   contributed   equally   to   the  
induced   voltage.   
 
Faraday’s   Law   is   formally   written   as:   
 

   εinduced =  − N dt
dΦ  

 
The   reason   that   there   is   a   negative   there   is   because   the   potential  
difference   is   in   the   direction   opposite   that   of   the   magnetic   flux  
busting.   
 
It   was   found   that   steady   electric   fields/currents   produce  
magnetic   fields,   but   steady   magnetic   fields   DO   NOT   produce  
electric   fields.   In   order   for   there   to   be   any   induced   current   or  
voltage,   THERE   MUST   BE   A   CHANGE   IN   THE   MAGNETIC  
FIELD.   In   other   words,   the   flux   needs   to   be   busted.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because   the   above   bar   is   going   through   a   magnetic   field,   there  
will   be   an   induced   voltage   across   the   bar.   
  



Chapter   13:   Optics   

 

sin(θ ) n sin(θ )n1 1 =  2 2  
 n =  c

v  
 θθincident =  ref lected  

 fλv =   
 hfEindividual photon =   
 h ( )Eindividual photon =  c

λ  
or photoelectric ef fect, KE  ν φ  F  electron = h −  binding energy  



 λmatter =  h
mv  

Quantum   Physics:  
At   the   turn   of   the   century,   it   was   thought   that   all   physics   was  
discovered   and   that   everything   was   deterministic   in   nature.   In  
other   words,   everything   that   happens   in   the   universe   can   be  
predicted   with   a   high   degree   of   accuracy   using   classical   physics.  
However,   we   know   now   that   classical   physics   do   not   hold   in   the  
nanoscopic   scale   and   with   objects   moving   close   to   the   speed   of  
light.   
 
Albert   Einstein,   though   against   Quantum   Physics   at   its   inception  
and   fought   to   disprove   it,   has   two   postulates   for   his   theory   of  
general   relativity   that   go   against   classical   physics:   
 

1. There   is   no   preferential   reference   frame   when   dealing   with  
objects   approaching   the   speed   of   light   (the   perspective   does  
not   matter)  

2. Nothing   can   move   faster   than   the   speed   of   light,   and   the  
speed   of   light   is   constant   irrespective   of   the   medium  
through   which   it   travels.   

 
It   was   also   discovered   that   photons   behave   in   an   irregular  
fashion,   sometimes   they   behave   like   particles   and   other   times  
they   behave   like   waves.   This   behavior   depended   on   the  



experiment   done.   We   will   discuss   the   wave   and   particle   duality  
in   greater   detail   later.   It   was   later   discovered   that   electrons  
behave   like   particles   and   waves   as   well.   
  



Photoelectric   Effect:  
What   baffled   scientists   for   decades   is   the   phenomena   called   the  
Photoelectric   Effect,   this   occurs   when   light   is   held   incident   on   a  
piece   of   metal   and   electrons   come   flying   off   the   metal.   Classical  
physics   would   dictate   that   as   the   intensity   of   the   light   increases,  
electrons   would   come   flying   off   faster,   this   is   because   the  
amplitude   of   the   light   wave   is   related   to   its   intensity   and   with   a  
greater   amplitude   the   energy   of   the   light   wave   should   increase.  
This   however,   was   not   the   case.   It   was   found   by   Albert   Einstein  
that   the   kinetic   energy   of   the   electron   was   related   not   by   the  
amplitude   of   the   light   wave,   but   rather   by   its   frequency.   He  
postulated   that   light   is   comprised   of   photons,   little   packets   of  
light   all   traveling   at   the   speed   of   light   infinitely   close   together  
and   that   their   energy   was   related   by   the   equation:   
 

 hfE =   
 
He   found   that   there   is   a   certain   frequency   that   must   be   reached  
in   order   for   electrons   to   fly   off   the   metal,   this   frequency   is   called  
the   threshold   frequency.   Einstein   stated   that   the   reason   why   this  
exists   is   because   there   must   be   a   certain   amount   of   energy   that  
must   be   absorbed   by   the   electron   in   order   to   break   the  
electrostatic   force   of   attraction   between   the   electron   and   the  
protons   present   in   the   atoms   of   the   metal   slab.   This   energy   that  



needs   to   be   broken   is   called   the   binding   energy   and   is   denoted   as  
.   The   resultant   kinetic   energy   of   the   electron   can   be   tabulated φ  

by   relating   it   to   the   binding   energy   and   the   energy   of   the  
incident   photons.   The   equation   is:   
 
  E  ν φK electron = h −  binding energy  
 
Once   the   threshold   frequency   is   reached,   the   intensity   of   the  
light   determines   how   many   electrons   are   flying   off   the   metal  
slab.   The   higher   the   intensity   of   the   light,   the   more   electrons   that  
fly   off   per   second.   However,   regardless   of   the   intensity   of   the  
light,   if   the   threshold   frequency   is   not   reached,   NO   electrons  
will   fly   off.   
 
It   is   also   important   to   note   that   when   the   energy   of   the   incident  
photons   are   equivalent   to   the   binding   energy,   the   resultant  
kinetic   energy   of   the   electron   is   zero   J.   Remember   that  

  so   the   electron   will   fly   off   faster   when   hit E 1 2 (mv )  K =  / 2  
with   higher   energy   incident   light.   
  



 

Reflection,   Refraction,   and   Diffraction:  
  
Whenever   light   hits   an   object,   4   things   happen,   the   light   is  
reflected,   transmitted/absorbed,   refracted,   or   diffracted.  
Reflection   occurs   when   the   light   “bounces”   off   the   object   in  
question.   The   angle   at   which   the   light   is   incident   on   the   object  
with   respect   to   the   normal   is   equal   to   the   angle   at   which   the   light  
is   reflected   on   the   object    with   respect   to   the   normal.   See   figure  
13.1   to   elucidate   this:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Transmission   and   absorption   is   defined   as   when   light   goes  
through   an   object   or   its   energy   is   captured   by   that   object.   See  
figure   13.2   to   elucidate   this   point:  
  
 
 
 
 
 
 
 
 
 
 
Refraction   is   when   light   is   bent   due   to   differing   mediums,   for  
example   when   light   goes   from   air   to   water,   the   light   is   bent,   or  
refracted.   This   phenomenon   is   also   responsible   for   the  
separation   of   light   wave   frequencies   (colors)   when   white   light   is  
incident   on   a   prism.   Different   frequencies   of   light   have   different  
coefficients   of   refraction,   n,   and   therefore   bend   to   different  
degrees,   giving   us   the   distinct   rainbow   we   see   when   light   is  
incident   on   the   prism.   This   relationship   is   dictated   by   Snell’s  
Law,   this   equation   states   that:   
 

sin(θ ) n sin(θ )n1 1 =  2 2  



 
All   materials   have   different   coefficients   of   refraction   and   they  
are   listed   on   the   regents   reference   table   or   other   sources   online  
for   you   to   look   at.   The   coefficient   of   refraction   is   calculated   by  
seeing   how   much   light   “slows   down”   relative   to   the   speed   of  
light.   Light   never   slows   down,   Einstein’s   theory   of   general  
relativity   states   as   much.   What   actually   happens   is   that   the  
molecules/atoms   inside   the   material   absorb   and   reemit   the   light,  
giving   the   appearance   that   the   light   is   moving   slower.   Think   of   it  
this   way,   if   you’re   on   a   highway   and   you   travel   at   a   constant   50  
m/s,   the   total   time   you   take   to   travel   a   distance   of   100   m   will   be  
longer   if   you   take   breaks   and   continue   on   at   50   m/s   versus   if   you  
went   straight   50   m/s   the   entire   time.   The   average   speed   would  
differ   depending   on   how   many   breaks   you   took   and   how   long  
those   breaks   were.   Even   though   in   both   scenarios,   the   car   was  
moving   at   50   m/s.   In   the   same   way,   light   always   travels   at  

  but   the   average   speed   of   the   light   will   differ  x 10  m s  3 8 /  
depending   on   how   many   atoms   absorb   and   reemit   it.   Therefore  
the   coefficient   of   refraction   is   n,   where   n   =   ,   important   to   note c

v  
that   n   will   ALWAYS   be   less   than   1,   so   you   won’t   ever   be  
confused   because   v   will   ALWAYS   be   less   than   the   speed   of   light  
(Einstein’s   theory   of   general   relativity   again…).   Also   important  
to   note   is   that   sin(x)   function   increases   on   the   domain   (0,   ) 2

π

which   means   that   if   the   coefficient   of   refraction   for   one   material  
is   larger   than   the   other,   the   angle   of   refraction   will   be   less   of   that  



material   to   compensate   for   the   larger   coefficient   of   refraction.  
There   is   a   critical   angle   that   can   be   derived   from   snell’s   law,  
where   any   angle   more   will   cause   reflection   and   at   the   critical  
angle,   the   light   ray   will   be   normal   to   the   boundary.   
 

sin(θ ) n sin(90)n1 critical =  2  
in (θ ) s critical = n1

n2  

 sin ( )θcritical =  1−
n1

n2  

 
Total   internal   reflection:   
Only   occurs   when   the   ratio   of   the   coefficient   of   refraction   is  
sufficiently   small.   Such   as   diamond   and   air.   The   light   tends   to  
get   trapped   inside   the   material   due   to   constant   reflection.   
 
Diffraction   occurs   when   light   or   some   other   wave   goes   into   an  
area   through   a   grating.   See   figure   13.3   for   a   pictorial   way   of  
viewing   this   phenomenon.   
 

 
 



The   way   that   these   waveforms   produce   the   diffraction   is   related  
by   the   equation:   
 

in(θ) s =  d
λ  

 
is   the   angle   between   the   central   propagation   and   the   first θ  

interference   pattern.   is   the   wavelength   of   the   diffracted   wave.  λ  
D   is   the   length   of   the   slit.   This   should   make   some   sense,   because  
if   you   increase   the   slit   length,   the   wave   lengths   should   be   larger  
and   vice   versa,   this   is   because   with   a   smaller   slit   the   waves   are  
crunched   more   and   thus   have   a   smaller   wavelength.   
 


