Calculus 1 Cheat Sheet Created by NeighborhoodGeeks

Derivations of important rules in calculus:	3
Product rule:	3
Quotient rule:	3
Power rule:	5
Natural logarithm derivative proof:	6
Proof of the derivative of ex :	7
Proof of the derivative of bx :	7
Proof of the derivative of tan(x) :	8
Proof of the derivative of cot(x) :	8
Inverse Function Derivative Theorem	9
Derivative properties:	9
Memorized derivatives:	10
Memorized integrals:	11
Memorized integrals: Integral properties:	11 14
Memorized integrals: Integral properties: Hard derivations (not necessary to know)	11 14 16
Memorized integrals: Integral properties: Hard derivations (not necessary to know) Proof of the derivative of sin(x)	11 14 16 16
Memorized integrals: Integral properties: Hard derivations (not necessary to know) Proof of the derivative of sin(x) Proof of the derivative of cos(x)	11 14 16 17
Memorized integrals: Integral properties: Hard derivations (not necessary to know) Proof of the derivative of sin(x) Proof of the derivative of cos(x) Proof of the derivative of csc(x)	11 14 16 16 17 18
Memorized integrals: Integral properties: Hard derivations (not necessary to know) Proof of the derivative of sin(x) Proof of the derivative of cos(x) Proof of the derivative of csc(x) Proof of the derivative of sec(x)	11 14 16 17 18 19

Derivations of important rules in calculus:

Product rule:

Let
$$y = f * g$$

 $ln(y) = ln(f * g)$
 $ln(y) = ln(f) + ln(g)$
 $\frac{d}{dx}(ln(y)) = \frac{d}{dx}(ln(f) + ln(g))$
 $\frac{y'}{y} = \frac{f'}{f} + \frac{g'}{g}$
 $y' = y(\frac{f'}{f} + \frac{g'}{g})$
 $y' = fg(\frac{f'}{f} + \frac{g'}{g})$
 $y' = f'g + fg'$

Quotient rule:

Proof 1:

y * g = f

$$y'g + yg' = f'$$

$$y'g = f' - yg'$$

$$y' = \frac{f' - yg'}{g}$$

$$y' = \frac{f' - \frac{f}{g}g'}{g}$$

$$y' = \frac{f'g - fg'}{g^2}$$

Power rule:

Let: $y = x^n$

$$ln(y) = nln(x)$$
$$\frac{y'}{y} = n\left(\frac{1}{x}\right)$$
$$\frac{y'}{y} = \frac{n}{x}$$

$$y' = y\left(\frac{n}{x}\right)$$
$$y' = \frac{nx^n}{x}$$
$$y' = nx^{n-1}$$

Natural logarithm derivative proof:

Let
$$y = ln(x)$$

 $e^{y} = x$
 $\frac{d}{dx}(e^{y}) = 1$
 $e^{y} * y' = 1$
 $y' = \frac{1}{e^{y}}$
 $y' = \frac{1}{x}$

Proof of the derivative of e^x :

Let
$$y = e^{x}$$

 $ln(y) = x$
 $\frac{y'}{y} = 1$
 $y' = y$
 $y' = e^{x}$

Proof of the derivative of b^x :

Let
$$y = b^{x}$$

 $ln(y) = xln(b)$
 $\frac{y'}{y} = ln(b)$
 $y' = y ln(b)$
 $y' = b^{x}ln(b)$

Plug in b = e for special surprise

Proof of the derivative of tan(x) :

Let
$$y = tan(x)$$

$$y = \frac{sin(x)}{cos(x)}$$

Quotient rule

$$y' = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}$$
$$y' = \frac{1}{\cos^2(x)}$$
$$y' = \sec^2(x)$$

Proof of the derivative of cot(x) :

Let y = cot(x)

$$y = \frac{\cos(x)}{\sin(x)}$$

Quotient rule

$$y' = \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)}$$
$$y' = \frac{-1(\sin^2(x) + \cos^2(x))}{\sin^2(x)}$$
$$y' = \frac{-1}{\sin^2(x)}$$
$$y' = -\csc^2(x)$$

Inverse Function Derivative Theorem

Let
$$y = f^{-1}(x)$$

$$f(y) = x$$

$$\frac{d}{dx}(f(y)) = 1$$

$$f'(y) * y' = 1$$

$$y' = \frac{1}{f'(y)}$$

Derivative properties:

$$\frac{dy}{dx} = y' = first \ derivative \ of \ y \ with \ respect \ to \ x$$

$$\frac{d^2y}{dx^2} = y'' = second \ derivative \ of \ y \ with \ respect \ to \ x$$

$$\frac{d}{dx}(f(g)) = f'(g) * g'$$

$$\frac{d}{dx}(f * g) = f'g + fg'$$

$$\frac{d}{dx}(\frac{f}{g}) = \frac{f'g - fg'}{g^2}$$

If $g = -y$, $\frac{dg}{dx} = -\frac{dy}{dx}$
If $g = ky$, $\frac{dg}{dx} = k \ \frac{dy}{dx}$
If $g = ky$, $\frac{dg}{dx} = k \ \frac{dy}{dx}$
If $y = f^{-1}(x)$, $\frac{dy}{dx} = \frac{1}{f'(y)}$ inverse function, not reciprocal

Memorized derivatives:

$$\frac{d}{dx}(sin(x)) = cos(x)$$

$$\frac{d}{dx}(cos(x)) = -sin(x)$$

$$\frac{d}{dx}(-sin(x)) = -\frac{d}{dx}(sin(x)) = -cos(x)$$

$$\frac{d}{dx}(-cos(x)) = -\frac{d}{dx}(cos(x)) = -1(-sin(x)) = sin(x)$$

$$\frac{d}{dx}(ln(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(tan(x)) = sec^{2}(x)$$

$$\frac{d}{dx}(sec(x)) = sec(x)tan(x)$$

$$\frac{d}{dx}(csc(x)) = -csc(x)cot(x)$$

$$\frac{d}{dx}(cot(x)) = -csc^{2}(x)$$

$$\frac{d}{dx}(e^{x}) = e^{x}$$

$$\frac{d}{dx}(b^{x}) = ln(b) b^{x}$$

$$\frac{d}{dx}(arcsin(x)) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(arccos(x)) = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(arctan(x)) = \frac{1}{1+x^{2}}$$

Memorized integrals:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int \frac{1}{x} dx = \ln(x) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$$

$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \cos(x) dx = \sin(x) + C$$

$$\int -\sin(x) dx = \cos(x) + C$$

$$\int -\cos(x) dx = -\sin(x) + C$$

$$\int \sec^2(x) dx = \tan(x) + C$$

$$\int \sec^2(x) dx = -\cot(x) + C$$

$$\int \sec(x)\tan(x) dx = \sec(x) + C$$

$$\int \sec(x)\tan(x) dx = -\csc(x) + C$$

$$\int \csc(x)\cot(x) dx = -\csc(x) + C$$

$$\int \tan(x) dx = \ln(\sin(x)) + C$$

$$\int \tan(x) dx = -\ln(\cos(x)) + C$$

$$\int \sin(kx) dx = -\frac{1}{k}\cos(kx) + C$$

$$\int \sin(kx) dx = \frac{1}{k}\sin(kx) + C$$

$$\int -\sin(kx) dx = \frac{1}{k}\cos(kx) + C$$

$$\int -\cos(kx) dx = -\frac{1}{k} \sin(kx) + C$$

$$\int \tan(kx) dx = \frac{1}{k} (\ln(\sin(x))) + C$$

$$\int \cot(kx) dx = -\frac{1}{k} (\ln(\cos(x))) + C$$

$$\int e^x dx = e^x + C$$

$$\int e^{-kx} dx = -\frac{1}{k} (e^{-kx}) + C$$

$$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$$

$$\int \sec(x) dx = \ln(\sec(x) + \tan(x)) + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin(\frac{x}{a}) + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C$$

$$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \arccos(\frac{x}{a}) + C$$

Integral properties:

 $\int \frac{d}{dx}(f(x)) dx = f(x) \text{ also known as the second fundamental}$ theorem of calculus (FTC) $\int_{a}^{b} f(x) dx = F(b) - F(a) \text{ where } F \text{ is the antiderivative of } f, F' = f$ also known as the first FTC.

 $\int_{-a}^{a} f(x) dx = 0, \text{ if } f(x) \text{ is an odd function} \text{ due to origin}$ symmetry

 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \text{ if } f(x) \text{ is an even function due to}$ y-axis symmetry

$$\int_{a}^{a} f(x) \, dx = 0$$

$$\int_{a}^{b} \frac{d}{dx}(f(x)) \, dx = f(b) - f(a)$$

$$\int -f(x) \, dx = - \int f(x) \, dx$$
$$\int k f(x) \, dx = k \int f(x) \, dx$$

$$-\int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx$$
$$\frac{d}{dx} (\int_{k}^{g(x)} f(t) dt) = f(g(x)) * g'(x)$$
$$\int \frac{f'(x)}{f(x)} dx = ln(f(x)) + C$$

 $V = \pi \int_{a}^{b} (r(x))^{2} dx$ assuming you could revolve the function around to make a disc, not a washer (there are no functions underneath it)

 $V = \pi \int_{a}^{b} (R(x))^{2} - (r(x))^{2} dx$ assuming there is a lower function hence r(x)'s inclusion.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \left(\sum_{k=1}^{n} (f(x_k) * \frac{b-a}{n}) \right)$$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \left(\sum_{k=1}^{n} (f(x_k) \Delta x_k) \right)$$

Hard derivations (not necessary to know)

Proof of the derivative of sin(x)

Let
$$y = sin(x)$$

 $arcsin(y) = x$
 $\frac{d}{dx}(arcsin(y)) = 1$
 $\frac{y'}{\sqrt{1-y^2}} = 1$
 $y' = \sqrt{1-y^2}$
 $y' = \sqrt{1-sin^2(x)}$

Pythagorean identity

$$y' = \sqrt{\cos^2(x)}$$
$$y' = |\cos(x)|$$

Is it $+\cos(x)$ or $-\cos(x)$?

Suppose $y' = -\cos(x)$

That would suggest that sin(x) is decreasing from 0 to $\frac{\pi}{2}$

This is because y' evaluates to a negative number on that domain. sin(x) is not decreasing from 0 to $\frac{\pi}{2}$ because $sin(\frac{\pi}{2})$ is greater than sin(0). Therefore we must reject the negative solution.

y' = cos(x)

Proof of the derivative of cos(x)

Let
$$y = cos(x)$$

arccos(y) = x

$$\frac{d}{dx}(\arccos(y)) = 1$$

1

$$\frac{-y'}{\sqrt{1-y^2}} =$$

 $-y' = \sqrt{1 - y^2}$ $y' = -\sqrt{1 - y^2}$

 $y' = -\sqrt{1 - \cos^2(x)}$

Pythagorean identity

$$y' = -\sqrt{\sin^2(x)}$$
$$y' = -|\sin(x)|$$

Is it $+\sin(x)$ or $-\sin(x)$?

cos(x) decreases from 0 to $\frac{\pi}{2}$ Therefore we need to have positive sin(x) because that guarantees that cos(x) will decrease from 0 to $\frac{\pi}{2}$

$$y' = -sin(x)$$

Proof of the derivative of csc(x)

Let
$$y = csc(x)$$

 $y = \frac{1}{sin(x)}$
 $y * sin(x) = 1$
 $\frac{d}{dx}(y * sin(x)) = 0$

Product rule

$$y'sin(x) + ycos(x) = 0$$

 $y'sin(x) = -ycos(x)$
 $y' = -y * \frac{cos(x)}{sin(x)}$
 $y' = -y * cot(x)$
 $y' = -csc(x)cot(x)$

Proof of the derivative of sec(x)

Let
$$y = sec(x)$$

 $y = \frac{1}{cos(x)}$
 $y * cos(x) = 1$

Product rule

$$\frac{d}{dx}(y * cos(x)) = 0$$

 $y'\cos(x) - y\sin(x) = 0$

$$y'cos(x) = ysin(x)$$
$$y' = y * \frac{sin(x)}{cos(x)}$$
$$y' = y tan(x)$$
$$y' = sec(x)tan(x)$$

Proof of the derivative of arcsin(x)

Let
$$y = \arcsin(x)$$

 $sin(y) = x$
 $\frac{d}{dx}(sin(y)) = 1$
 $cos(y) * y' = 1$
 $y' = \frac{1}{cos(y)}$
 $y' = sec(y)$

Recall that sin(y) = x, in general $sin(\theta) = \frac{Opposite}{Hypotenuse}$

This implies that $sin(y) = \frac{x}{1}$

Now we know the opposite side is x, the hypotenuse is 1

Applying pythagorean theorem, we get the adjacent side is

$$x^{2} + Adjacent^{2} = 1$$
$$Adjacent^{2} = 1 - x^{2}$$
$$Adjacent = \sqrt{1 - x^{2}}$$

Thus the following triangle is constructed:

We know that
$$y' = sec(y)$$

$$sec(y) = \frac{Hypotenuse}{Adjacent} = \frac{1}{\sqrt{1-x^2}}$$

Therefore we know that

$$y' = \frac{1}{\sqrt{1-x^2}}$$

The same process can be used to prove all of the inverse trigonometric functions :)