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Derivations of important rules in calculus:  

Product rule:  

 
Let  f  gy =  *   
 
n(y) ln(f )l =  * g  

 
n(y) ln(f ) ln(g)l =  +   

 
(ln(y)) ( ln(f ) ln(g) )d 

dx =  d
dx +   

 
  y

y′ =  f
f ′ +  g

g′  
 

 y(  )y′ =  f
f ′ +  g

g′  
 

 fg(  )y′ =  f
f ′ +  g

g′  
 

 f g fgy′ =  ′ +  ′  
 

Quotient rule:  

 
Proof 1:  



Let  y =  fg  
 
n(y) ln( )l =  f

g  
 

(ln(y)) (ln( ))d
dx =  d

dx
f
g  

 
 ( ln(f ) ln(g)) y

y′ =  d
dx −   

 
  y

y′ =  f
f ′ −  g

g′  
 

) y(y′ =    f
f ′ −  g

g′  
 

 (  )y′ =  fg f
f ′ −  g

g′  
 

  y′ =  g
f ′ −  g2

g f′  
 

 y′ =  g2
f g − g f′ ′  

 
Proof 2:  
 
Let  y =  fg  
 

  fy * g =   



 
 
g yg  f  y′ +  ′ =  ′  

 
 
g f  ygy′ =  ′ −  ′  

 
 

 y′ =  g
f  − yg′ ′  

 

 y′ =  g
f  − g′ f

g ′
 

 
 y′ =  g2

f g − fg′ ′  
 

Power rule:  

 
Let:  xy =  n  
 
n(y) nln(x) l =   

 
 n ( ) y

y′ =  x
1  

 
 y

y′ =  x
n  



 
 y ( )y′ =  x

n  
 

 y′ =  x
nxn  

 
 nxy′ =  n−1  

 
 
 

Natural logarithm derivative proof:  

 
Let  ln(x) y =   
 

 x ey =   
 

(e ) 1d
dx

y =   
 

 y  1ey *  ′ =   
 

 y′ =  1
ey  

 
 y′ =  x

1  
 



Proof of the derivative of  :ex   

 
Let y = ex  
 
n(y) xl =   

 
 1y

y′ =   
 

 y y′ =   
 

 ey′ =  x  
 

Proof of the derivative of  :bx   

 
Let y = bx  
 
n(y) xln(b) l =   

 
 ln(b) y

y′ =   
 

 y ln(b)y′ =   
 

 b ln(b) y′ =  x  



 
 
Plug in b = e for special surprise  
 

Proof of the derivative of tan(x) :  

 
Let  tan(x) y =   
 

 y =  sin(x)
cos(x)  

 
Quotient rule 
 

 y′ =  cos (x)2
cos (x) + sin (x)2 2

 
 

 y′ =  1
cos (x)2  

 
 sec (x) y′ =  2  

 
 

Proof of the derivative of cot(x) :  

 
Let y cot(x)  =   
 



 y =  sin(x)
cos(x)  

 
Quotient rule 
 

 y′ =  sin (x)2
−sin (x) − cos (x)2 2

 
 

 y′ =  sin (x)2
−1(sin (x) + cos (x)) 2 2

 
 

 y′ =  −1
sin (x)2  

 
 sc (x)y′ =  − c 2  

 

Inverse Function Derivative Theorem 
 

Let  f (x)y =  −1  
 

(y) xf =   
(f (y)) 1d

dx =   
(y) y  1f ′ *  ′ =   
 y′ =  1

f (y)′  

Derivative properties:  
 

 y  f irst derivative of  y with respect to x dx
dy =  ′ =   



 y  second derivative of  y with respect to x dx2
d y2

=  ′′ =   
(f (g)) f (g) gd

dx =  ′ *  ′  
(f ) f g fgd

dx * g =  ′ +  ′  
( ) d

dx  g
  f  =  g2

f g − fg′ ′  

If  ,  g =  − y  dx
dg =  −  dx

dy  
If  ky,  k g =   dx

dg =  dx
dy  

If  inverse function, not reciprocal f (x),  y =  −1  dx
dy =  1

f (y)′   
 

Memorized derivatives:  
 

(sin(x)) cos(x)d
dx =   

 
(cos(x)) in(x) d

dx =  − s  
 

(− in(x)) (sin(x)) cos(x)d
dx s =  −  d

dx =  −   
 

(− os(x)) (cos(x)) (− in(x)) sin(x) d
dx c =  −  d

dx =  − 1 s =   
 

(ln(x)) d
dx =  x

1  
 

(tan(x)) sec (x)d
dx =  2  

 
(sec(x)) sec(x)tan(x)d

dx =   



(csc(x)) sc(x)cot(x)d
dx =  − c  

 
(cot(x)) sc (x)d

dx =  − c 2  
 

(e ) ed
dx

x =  x  
 

(b ) ln(b) bd
dx

x =  x  
 

(arcsin(x)) d
dx =  1

√1−x2
 

(arccos(x)) d
dx =  −1

√1−x2
 

(arctan(x)) d
dx =  1

1+ x2  
 

Memorized integrals:  
 

 dx  C∫
 

 
xn =  n+1

xn+1
+   

 dx ln(x) C∫
 

 
x
1 =  +   

 dx arcsin(x) C∫
 

 

1
√1− x2

=  +   

in(x) dx os(x) C∫
 

 
s =  − c +   



os(x) dx sin(x) C∫
 

 
c =  +   

− in(x) dx cos(x) C∫
 

 
s =  +   

− os(x) dx in(x) C∫
 

 
c =  − s +   

ec (x) dx tan(x) C∫
 

 
s 2 =  +    

sc (x) dx cot(x) C∫
 

 
c 2 =  −  +   

ec(x)tan(x) dx sec(x) C∫
 

 
s =  +   

sc(x)cot(x) dx sc(x) C∫
 

 
c =  − c +   

an(x) dx ln(sin(x)) C∫
 

 
t =  +   

ot(x) dx n(cos(x)) C∫
 

 
c =  − l +   

in(kx) dx cos(kx) C∫
 

 
s =  − k

1 +   

os(kx) dx sin(kx) C∫
 

 
c =  k

1 +   

− in(kx) dx cos(kx) C∫
 

 
s =  k

1 +   



− os(kx) dx  sin(kx) C∫
 

 
c =  − k

1 +   

an(kx) dx (ln(sin(x)) C∫
 

 
t =  k

1 +   

ot(kx) dx (ln(cos(x)) C∫
 

 
c =  − k

1 +   

 dx e  C∫
 

 
ex =  x +   

 dx  (e ) C∫
 

 
e−kx =  − k

1 −kx +   

 dx  e  C∫
 

 
ekx =  k

1 kx +   

ec(x) dx ln(sec(x) tan(x) ) C∫
 

 
s =  +  +   

dx rcsin( ) C∫
 

 

1
 √a  − x2 2

= a x
a +   

 dx  arctan( ) C∫
 

 

1
a  + x2 2 =  a

1 x
a +   

dx arccos( ) C∫
 

 
 −1

 √a  − x2 2
=  x

a +   

 

Integral properties:  
 



also known as the second fundamental(f (x)) dx  f (x) ∫
 

 

d
dx =   

theorem of calculus (FTC)  

(x) dx (b) F (a) where F  is the antiderivative of  f , F  f  ∫
b

a
f = F −   ′ =  

also known as the first FTC.  
 

due to origin(x) dx 0, if  f (x) is an odd function  ∫
a

−a
f =    

symmetry  
 

due to(x) dx 2 (x) dx, if  f (x) is an even function ∫
a

−a
f =  ∫

a

0
f   

y-axis symmetry  
 

(x) dx 0 ∫
a

a
f =   

 

(f (x)) dx f (b) f (a) ∫
b

a

d
dx =  −   

 

− f (x) dx (x) dx ∫
 

 
 =  −  ∫

 

 
f  

 f (x) dx k (x) dx ∫
 

 
k =  ∫

 

 
f  



(x) dx (x) dx − ∫
b

a
f =  ∫

a

b
f  

( (t) dt) f (g(x)) g (x) d
dx ∫

g(x)

k
f =  *  ′  

 dx ln(f (x)) C∫
 

 
f (x)
f (x)′ =  +   

assuming you could revolve the function π (r(x))  dx V =  ∫
b

a

2  

around to make a disc, not a washer (there are no 
functions underneath it)  
 

assuming there is a lower π (R(x))  (r(x))  dx V =  ∫
b 

a

2 −  2  

function hence r(x)’s inclusion.  
 

(x) dx ( (f (x ) ))∫
b

a
f =  lim

n→∞
∑
n

k=1
 k *  n

b−a  

 

(x) dx ( ( f (x ) Δx ) ) ∫
b

a
f = lim

n→∞
∑
n

k=1
k k  

 
 

Hard derivations (not necessary to know)  
 



Proof of the derivative of sin(x)  

 
Let  sin(x) y =   
 
rcsin(y) xa =   
(arcsin(y)) 1d

dx =   
 

 1y′

 √1−y2
=   

 
  y′ =  √1 − y2  

 
  y′ =  √1 sin (x)−  2  

 
Pythagorean identity  
 

  y′ =  √cos (x) 2  
 

 y′ =  cos(x)| |  
 
Is it +cos(x) or -cos(x)?  
 
Suppose  cos(x)y′ =  −   
 
That would suggest that  is decreasing from in(x)s  to 0 2

π  



This is because y’ evaluates to a negative number on that 
domain.  is not decreasing from becausein(x)s  to 0 2

π  
is greater than . Therefore we must reject thein( ) s 2

π in(0)s  
negative solution.  
 

 cos(x)y′ =   
 

Proof of the derivative of cos(x) 
 

Let  cos(x)y =   
 
rccos(y) xa =   

 
(arccos(y)) 1d

dx =   
 

 1−y′

√1−y2
=   

 
  − y′ =  √1 − y2  

 
  y′ =  −  √1 − y2  

 
  y′ =  −  √1 os (x)− c 2  

 
Pythagorean identity  



 
  y′ =  −  √sin (x)2  

 
 y′ =  −  sin(x)| |  

 
Is it +sin(x) or -sin(x)?  
 
cos(x) decreases from  to 0 2

π  
Therefore we need to have positive sin(x) because that 
guarantees that cos(x) will decrease from  to 0 2

π  
 

 in(x)y′ =  − s  
 
 

Proof of the derivative of csc(x)  
 
 

Let  csc(x) y =   
 

 y =  1
sin(x)  

 
in(x) 1 y * s =   

 
(y sin(x)) 0d

dx *  =   
 



Product rule 
sin(x) ycos(x) 0y′ +  =   

 
sin(x) cos(x)y′ =  − y  

 
  y′ =  − y *  sin(x)

cos(x)  
 

  cot(x)y′ =  − y *   
 

 sc(x)cot(x)y′ =  − c  
 

Proof of the derivative of sec(x)  
 

Let  sec(x)y =   
 

 y =  1
cos(x)  

 
 cos(x) 1y *  =   

 
Product rule 
 

(y cos(x) ) 0d
dx *  =   

 
cos(x) ysin(x) 0 y′ −  =   



 
cos(x) ysin(x)y′ =   

 
 y y′ =  *  sin(x)

cos(x)  
 

 y tan(x)y′ =   
 

 sec(x)tan(x)y′ =   
 

Proof of the derivative of arcsin(x) 
 

Let  arcsin(x)y =   
 
in(y) x s =   

 
(sin(y) ) 1d

dx =   
 
os(y) y  1c *  ′ =   

 
 y′ =  1

cos(y)  
 

 sec(y) y′ =   
 
Recall that , in general in(y) x s =  in(θ) s =  Opposite

Hypotenuse  



 
This implies that in(y)  s =  x1  
 
Now we know the opposite side is x, the hypotenuse is 1 
 
Applying pythagorean theorem, we get the adjacent side is  
 

 Adjacent  1x2 +  2 =   
 
djacent  1A 2 =  − x2  

 
djacent A =  √1 x−  2  

 
Thus the following triangle is constructed:  
 
  
 
 
 
 
 
 
 
 
We know that  sec(y)y′ =   
 



ec(y)   s =  Adjacent
Hypotenuse =  1

√1−x2
 

 
Therefore we know that  
 

   y′ =  1
√1−x2

 

 
The same process can be used to prove all of the inverse 
trigonometric functions :) 
 
 
  
   


