Calculus 1 Cheat Sheet Created by NeighborhoodGeeks

Derivations of important rules in calculus:

Product rule:

Let
$$
y = f * g
$$

\n $ln(y) = ln(f * g)$
\n $ln(y) = ln(f) + ln(g)$
\n $\frac{d}{dx}(ln(y)) = \frac{d}{dx}(ln(f) + ln(g))$
\n $\frac{y'}{y} = \frac{f}{f} + \frac{g'}{g}$
\n $y' = y(\frac{f}{f} + \frac{g'}{g})$
\n $y' = fg(\frac{f}{f} + \frac{g'}{g})$
\n $y' = fg + fg'$

Quotient rule:

Proof 1:

y $* g = f$

$$
y'g + yg' = f'
$$

$$
y'g = f' - yg'
$$

$$
y' = \frac{f' - yg'}{g'}
$$

$$
y' = \frac{f' - \frac{f}{g}g'}{g'}
$$

$$
y' = \frac{fg - fg'}{g^2}
$$

Power rule:

Let: $y = x^n$

$$
ln(y) = nln(x)
$$

$$
\frac{y'}{y} = n\left(\frac{1}{x}\right)
$$

$$
\frac{y'}{y} = \frac{n}{x}
$$

$$
y' = y\left(\frac{n}{x}\right)
$$

$$
y' = \frac{nx^n}{x}
$$

$$
y' = nx^{n-1}
$$

Natural logarithm derivative proof:

Let
$$
y = ln(x)
$$

\n $e^y = x$
\n $\frac{d}{dx}(e^y) = 1$
\n $e^y * y' = 1$
\n $y' = \frac{1}{e^y}$
\n $y' = \frac{1}{x}$

Proof of the derivative of e^x :

Let
$$
y = e^x
$$

\n $ln(y) = x$
\n $\frac{y'}{y} = 1$
\n $y' = y$
\n $y' = e^x$

Proof of the derivative of b^x :

Let
$$
y = b^x
$$

\n $ln(y) = xln(b)$
\n $\frac{y'}{y} = ln(b)$
\n $y' = y ln(b)$
\n $y' = b^x ln(b)$

Plug in $b = e$ for special surprise

Proof of the derivative of tan(x) :

Let
$$
y = tan(x)
$$

$$
y = \frac{\sin(x)}{\cos(x)}
$$

Quotient rule

$$
y' = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)}
$$

$$
y' = \frac{1}{\cos^2(x)}
$$

$$
y' = \sec^2(x)
$$

Proof of the derivative of cot(x) :

Let $y = \cot(x)$

$$
y = \frac{\cos(x)}{\sin(x)}
$$

Quotient rule

$$
y' = \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)}
$$

\n
$$
y' = \frac{-1(\sin^2(x) + \cos^2(x))}{\sin^2(x)}
$$

\n
$$
y' = \frac{-1}{\sin^2(x)}
$$

\n
$$
y' = -\csc^2(x)
$$

Inverse Function Derivative Theorem

Let
$$
y = f^{-1}(x)
$$

\n $f(y) = x$
\n $\frac{d}{dx}(f(y)) = 1$
\n $f'(y) * y' = 1$
\n $y' = \frac{1}{f(y)}$

Derivative properties:

$$
\frac{dy}{dx} = y' = first derivative of y with respect to x
$$

$$
\frac{d^2y}{dx^2} = y'' = second derivative of y with respect to x
$$

\n
$$
\frac{d}{dx}(f(g)) = f'(g) * g'
$$

\n
$$
\frac{d}{dx}(f * g) = f'g + fg'
$$

\n
$$
\frac{d}{dx}(\frac{f}{g}) = \frac{fg - fg'}{g^2}
$$

\nIf $g = -y$, $\frac{dg}{dx} = -\frac{dy}{dx}$
\nIf $g = ky$, $\frac{dg}{dx} = k \frac{dy}{dx}$
\nIf $y = f^{-1}(x)$, $\frac{dy}{dx} = \frac{1}{f(y)}$ inverse function, not reciprocal

Memorized derivatives:

$$
\frac{d}{dx}(sin(x)) = cos(x)
$$
\n
$$
\frac{d}{dx}(cos(x)) = -sin(x)
$$
\n
$$
\frac{d}{dx}(-sin(x)) = -\frac{d}{dx}(sin(x)) = -cos(x)
$$
\n
$$
\frac{d}{dx}(-cos(x)) = -\frac{d}{dx}(cos(x)) = -1(-sin(x)) = sin(x)
$$
\n
$$
\frac{d}{dx}(ln(x)) = \frac{1}{x}
$$
\n
$$
\frac{d}{dx}(tan(x)) = sec^{2}(x)
$$
\n
$$
\frac{d}{dx}(sec(x)) = sec(x)tan(x)
$$

$$
\frac{d}{dx}(csc(x)) = -csc(x)cot(x)
$$
\n
$$
\frac{d}{dx}(cot(x)) = -csc^{2}(x)
$$
\n
$$
\frac{d}{dx}(e^{x}) = e^{x}
$$
\n
$$
\frac{d}{dx}(b^{x}) = ln(b) b^{x}
$$
\n
$$
\frac{d}{dx}(arcsin(x)) = \frac{1}{\sqrt{1-x^{2}}}
$$
\n
$$
\frac{d}{dx}(arccos(x)) = \frac{-1}{\sqrt{1-x^{2}}}
$$
\n
$$
\frac{d}{dx}(arctan(x)) = \frac{1}{1+x^{2}}
$$

Memorized integrals:

$$
\int x^n dx = \frac{x^{n+1}}{n+1} + C
$$

$$
\int \frac{1}{x} dx = ln(x) + C
$$

$$
\int \frac{1}{\sqrt{1-x^2}} dx = arcsin(x) + C
$$

$$
\int sin(x) dx = -cos(x) + C
$$

$$
\int \cos(x) dx = \sin(x) + C
$$
\n
$$
\int -\sin(x) dx = \cos(x) + C
$$
\n
$$
\int -\cos(x) dx = -\sin(x) + C
$$
\n
$$
\int \sec^2(x) dx = \tan(x) + C
$$
\n
$$
\int \csc^2(x) dx = -\cot(x) + C
$$
\n
$$
\int \sec(x)\tan(x) dx = \sec(x) + C
$$
\n
$$
\int \csc(x)\cot(x) dx = -\csc(x) + C
$$
\n
$$
\int \tan(x) dx = \ln(\sin(x)) + C
$$
\n
$$
\int \cot(x) dx = -\ln(\cos(x)) + C
$$
\n
$$
\int \sin(kx) dx = -\frac{1}{k}\cos(kx) + C
$$
\n
$$
\int -\sin(kx) dx = \frac{1}{k}\cos(kx) + C
$$

$$
\int -\cos(kx) dx = -\frac{1}{k} \sin(kx) + C
$$

\n
$$
\int \tan(kx) dx = \frac{1}{k} (\ln(\sin(x)) + C
$$

\n
$$
\int \cot(kx) dx = -\frac{1}{k} (\ln(\cos(x)) + C
$$

\n
$$
\int e^x dx = e^x + C
$$

\n
$$
\int e^{-kx} dx = -\frac{1}{k} (e^{-kx}) + C
$$

\n
$$
\int e^{kx} dx = \frac{1}{k} e^{kx} + C
$$

\n
$$
\int \sec(x) dx = \ln(\sec(x) + \tan(x)) + C
$$

\n
$$
\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin(\frac{x}{a}) + C
$$

\n
$$
\int \frac{1}{\sqrt{a^2 - x^2}} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C
$$

Integral properties:

 $\int \frac{d}{dx} f(x) dx$ = $f(x)$ also known as the second fundamental theorem of calculus (FTC) $\int f(x) dx = F(b) - F(a)$ where *F* is the antiderivative of *f*, $F' = f$ *b a* $f(x) dx = F(b) - F(a)$ where *F* is the antiderivative of *f*, $F' = f(x)$ also known as the first FTC.

 $\int f(x) dx = 0$, *if* $f(x)$ *is an odd function* due to origin *a* −*a* $f(x) dx =$ symmetry

 $∫ f(x) dx = 2 ∫ f(x) dx$, *if* $f(x)$ *is an even function* due to *a* −*a* $f(x) dx = 2 \int$ *a* 0 *f* y-axis symmetry

$$
\int_a^a f(x) \ dx = 0
$$

$$
\int_{a}^{b} \frac{d}{dx} (f(x)) dx = f(b) - f(a)
$$

$$
\int - f(x) dx = - \int f(x) dx
$$

$$
\int k f(x) dx = k \int f(x) dx
$$

$$
-\int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx
$$

$$
\frac{d}{dx}(\int_{k}^{g(x)} f(t) dt) = f(g(x)) * g'(x)
$$

$$
\int \frac{f'(x)}{f(x)} dx = ln(f(x)) + C
$$

 $V = \pi \int (r(x))^2 dx$ assuming you could revolve the function *b a* 2 around to make a disc, not a washer (there are no functions underneath it)

 $V = \pi \int (R(x))^2 - (r(x))^2 dx$ assuming there is a lower *b a* $2 - (r(x))^2$ function hence r(x)'s inclusion.

$$
\int_{a}^{b} f(x) dx = \lim_{n \to \infty} (\sum_{k=1}^{n} (f(x_k) * \frac{b-a}{n}))
$$

$$
\int_{a}^{b} f(x) dx = \lim_{n \to \infty} (\sum_{k=1}^{n} (f(x_k) \Delta x_k))
$$

Hard derivations (not necessary to know)

Proof of the derivative of sin(x)

Let
$$
y = sin(x)
$$

\n $arcsin(y) = x$
\n $\frac{d}{dx}(arcsin(y)) = 1$
\n $\frac{y'}{\sqrt{1-y^2}} = 1$
\n $y' = \sqrt{1-y^2}$
\n $y' = \sqrt{1-sin^2(x)}$

Pythagorean identity

$$
y' = \sqrt{\cos^2(x)}
$$

$$
y' = |\cos(x)|
$$

Is it $+cos(x)$ or $-cos(x)$?

Suppose $y' = -\cos(x)$

That would suggest that $sin(x)$ is decreasing from 0 to $\frac{\pi}{2}$

This is because y' evaluates to a negative number on that domain. $sin(x)$ is not decreasing from 0 to $\frac{\pi}{2}$ because $sin(\frac{\pi}{2})$ is greater than $sin(0)$. Therefore we must reject the negative solution.

 $y' = cos(x)$

Proof of the derivative of cos(x)

Let
$$
y = cos(x)
$$

 $\arccos(y) = x$

$$
\frac{d}{dx}(arccos(y)) = 1
$$

$$
\frac{-y'}{\sqrt{1-y^2}} = 1
$$

$$
-y' = \sqrt{1 - y^2}
$$

$$
y' = -\sqrt{1 - y^2}
$$

 $y' = -\sqrt{1 - cos^2(x)}$

Pythagorean identity

$$
y' = -\sqrt{\sin^2(x)}
$$

$$
y' = -|\sin(x)|
$$

Is it $+sin(x)$ or $-sin(x)$?

 $cos(x)$ decreases from 0 to $\frac{\pi}{2}$ Therefore we need to have positive sin(x) because that guarantees that $\cos(x)$ will decrease from $\,0\;to\frac{\pi}{2}$

$$
y' = -\sin(x)
$$

Proof of the derivative of csc(x)

Let
$$
y = csc(x)
$$

\n
$$
y = \frac{1}{sin(x)}
$$
\n
$$
y * sin(x) = 1
$$
\n
$$
\frac{d}{dx}(y * sin(x)) = 0
$$

Product rule
\n
$$
y'sin(x) + ycos(x) = 0
$$
\n
$$
y'sin(x) = -ycos(x)
$$
\n
$$
y' = -y * \frac{cos(x)}{sin(x)}
$$
\n
$$
y' = -y * cot(x)
$$
\n
$$
y' = -csc(x)cot(x)
$$

Proof of the derivative of sec(x)

Let
$$
y = sec(x)
$$

\n
$$
y = \frac{1}{cos(x)}
$$
\n
$$
y * cos(x) = 1
$$

Product rule

$$
\frac{d}{dx}(y \ * \ cos(x)) = 0
$$

y′*cos*(*x*) − *ysin*(*x*) = 0

$$
y'cos(x) = ysin(x)
$$

\n
$$
y' = y * \frac{sin(x)}{cos(x)}
$$

\n
$$
y' = y tan(x)
$$

\n
$$
y' = sec(x)tan(x)
$$

Proof of the derivative of arcsin(x)

Let
$$
y = arcsin(x)
$$

\n $sin(y) = x$
\n $\frac{d}{dx}(sin(y)) = 1$
\n $cos(y) * y' = 1$
\n $y' = \frac{1}{cos(y)}$
\n $y' = sec(y)$

Recall that $sin(y) = x$, in general $sin(\theta) = \frac{Opposite}{Hynotenuse}$ *Hypotenuse* This implies that $sin(y) = \frac{x}{1}$ 1

Now we know the opposite side is x, the hypotenuse is 1

Applying pythagorean theorem, we get the adjacent side is

$$
x2 + Adjacent2 = 1
$$

Adjacent² = 1 - x²
Adjacent = $\sqrt{1 - x^{2}}$

Thus the following triangle is constructed:

We know that
$$
y' = sec(y)
$$

$$
sec(y) = \frac{Hypotenuse}{Adjacent} = \frac{1}{\sqrt{1-x^2}}
$$

Therefore we know that

$$
y' = \frac{1}{\sqrt{1-x^2}}
$$

The same process can be used to prove all of the inverse trigonometric functions :)